
R1B1 GUI Detailed Design 1 2/22/00

COORDINATED HIGHWAYS ACTION RESPONSE TEAM
STATE HIGHWAY ADMINISTRATION

R1B1 GUI Detailed Design

Contract DBM-9713-NMS
TSR # 9901961

Document # M361-DS-004R0

January 21, 2000
By

Computer Sciences Corporation and PB Farradyne
Inc

R1B1 GUI Detailed Design ii 2/22/00

Table of Contents
1 Introduction...1-1

1.1 Purpose..1-1
1.2 Objectives ...1-1
1.3 Scope...1-1
1.4 Acronyms..1-1
1.5 References...1-2
1.6 Design Process ..1-2
1.7 Design Tools ...1-3
1.8 Work Products ..1-3

2 Software Architecture ..2-1

3 Use Cases ...3-1
3.1 Release1UseCaseDiagram (Use Case Diagram) ..3-1

4 Classes..4-1
4.1 R1B1GUIClassDiagram (Class Diagram) ..4-1
4.2 DataModelClasses (Class Diagram) ...4-5
4.3 NavigatorClasses (Class Diagram) ...4-10
4.4 GUIDMSClasses (Class Diagram) ...4-13
4.5 GUIDictionaryModuleClasses (Class Diagram)...4-18
4.6 GUIPlanClasses (Class Diagram) ...4-21
4.7 GUIUserManagementClasses (Class Diagram)..4-24
4.8 UtilityClasses (Class Diagram)...4-26
4.9 SystemInterfaces (Class Diagram)..4-31
4.10 JavaClasses (Class Diagram) ..4-36
4.11 CORBAClasses (Class Diagram) ...4-38

5 Sequence Diagrams ...5-1
5.1 GUI:ChangeUserBasic (Sequence Diagram)..5-1
5.2 GUI:CommandObjectBasic (Sequence Diagram) ..5-2
5.3 GUI:ConfigurePreferencesBasic (Sequence Diagram)...5-3
5.4 GUI:DiscoveryBasic (Sequence Diagram) ...5-4
5.5 GUI:LoginBasic (Sequence Diagram)..5-5
5.6 GUI:LogoutBasic (Sequence Diagram)..5-6
5.7 GUI:MakeMenuMultipleSelect (Sequence Diagram) ..5-7
5.8 GUI:MakeMenuNoneSelected (Sequence Diagram)..5-8
5.9 GUI:MakeMenuSingleSelect (Sequence Diagram)..5-9
5.10 GUI:ShutdownBasic (Sequence Diagram) ...5-10
5.11 GUI:StartupBasic (Sequence Diagram)..5-11
5.12 GUI:EventUpdatePushedBasic (Sequence Diagram) ...5-13
5.13 GUI:SystemCommandBasic (Sequence Diagram) ...5-14
5.14 DataModel:AttachObserver (Sequence Diagram) ..5-14
5.15 DataModel:ObjectAdded_ (Sequence Diagram) ..5-16

R1B1 GUI Detailed Design iii 2/22/00

5.16 DataModel:ObjectRemoved (Sequence Diagram) ...5-17
5.17 DataModel:ObjectUpdated (Sequence Diagram) ...5-18
5.18 DataModel:UpdateObservers (Sequence Diagram)..5-19
5.19 Navigator:AddNavigables (Sequence Diagram)...5-20
5.20 Navigator:Initialize (Sequence Diagram) ...5-21
5.21 Navigator:RemoveNavigables (Sequence Diagram) ..5-22
5.22 Navigator:TreeSelectionChange (Sequence Diagram) ...5-23
5.23 GUIDMSModule:AddDMS (Sequence Diagram)..5-24
5.24 GUIDMSModule:AddMessageToLibrary (Sequence Diagram)..................................5-25
5.25 GUIDMSModule:CreateMessageLibrary (Sequence Diagram)...................................5-26
5.26 GUIDMSModule:DeleteMessageLibrary (Sequence Diagram)...................................5-27
5.27 GUIDMSModule:DeleteStoredMessage (Sequence Diagram)5-28
5.28 GUIDMSModule:Login (Sequence Diagram)..5-28
5.29 GUIDMSModule:Logout (Sequence Diagram)..5-29
5.30 GUIDMSModule:EditLibraryMessage (Sequence Diagram).......................................5-31
5.31 GUIDMSModule:SetMessageLibraryProperties (Sequence Diagram)........................5-32
5.32 GUIDMSModule:BlankDMS (Sequence Diagram) ...5-33
5.33 GUIDMSModule:CreateNewPlanItem (Sequence Diagram).......................................5-34
5.34 GUIDMSModule:DeleteDMS (Sequence Diagram) ..5-35
5.35 GUIDMSModule:Shutdown (Sequence Diagram) ...5-36
5.36 GUIDMSModule:Startup (Sequence Diagram)..5-37
5.37 GUIDMSModule:Discovery (Sequence Diagram)...5-38
5.38 GUIDMSModule:ForcePoll (Sequence Diagram)..5-39
5.39 GUIDMSModule:ModifyDMSSettings (Sequence Diagram)......................................5-40
5.40 GUIDMSModule:PutOnline (Sequence Diagram) ...5-41
5.41 GUIDMSModule:Reset (Sequence Diagram) ..5-42
5.42 GUIDMSModule:SetMessage (Sequence Diagram) ..5-43
5.43 GUIDMSModule:ShowTrueDisplay (Sequence Diagram) ..5-44
5.44 GUIDMSModule:TakeOffline (Sequence Diagram)..5-45
5.45 GUIDictionaryModule:DictionaryProperties (Sequence Diagram)5-46
5.46 GUIDictionaryModule:Discovery (Sequence Diagram) ..5-47
5.47 GUIDictionaryModule:EventHandling (Sequence Diagram).......................................5-48
5.48 GUIDictionaryModule:Shutdown (Sequence Diagram)...5-49
5.49 GUIDictionaryModule:Startup (Sequence Diagram) ...5-50
5.50 GUIPlanModule:ActivatePlan (Sequence Diagram) ..5-51
5.51 GUIPlanModule:AddPlan (Sequence Diagram)...5-52
5.52 GUIPlanModule:CreatePlanItem (Sequence Diagram)..5-53
5.53 GUIPlanModule:Discovery (Sequence Diagram) ..5-54
5.54 GUIPlanModule:PlanItemAddedEvent (Sequence Diagram)5-55
5.55 GUIPlanModule:PlanItemRemovedEvent (Sequence Diagram)..................................5-56
5.56 GUIPlanModule:PlanRemovedEvent (Sequence Diagram) ...5-57
5.57 GUIPlanModule:RemovePlan (Sequence Diagram) ..5-58
5.58 GUIPlanModule:PlanAddedEvent (Sequence Diagram)..5-59
5.59 GUIPlanModule:RemovePlanItem (Sequence Diagram) ...5-60
5.60 GUIPlanModule:Shutdown (Sequence Diagram)...5-61

R1B1 GUI Detailed Design iv 2/22/00

5.61 GUIPlanModule:Startup (Sequence Diagram) ...5-62
5.62 GUIUserManagementModule:AddUser (Sequence Diagram)5-63
5.63 GUIUserManagementModule:ConfigureRoles (Sequence Diagram)5-64
5.64 GUIUserManagementModule:ConfigureUsers (Sequence Diagram)5-65
5.65 GUIUserManagementModule:CreateRole (Sequence Diagram)5-66
5.66 GUIUserManagementModule:DeleteRole (Sequence Diagram)5-67
5.67 GUIUserManagementModule:DeleteUser (Sequence Diagram)5-68
5.68 GUIUserManagementModule:ForceLogout (Sequence Diagram)...............................5-69
5.69 GUIUserManagementModule:GrantRole (Sequence Diagram)...................................5-70
5.70 GUIUserManagementModule:Login (Sequence Diagram)..5-71
5.71 GUIUserManagementModule:Discovery (Sequence Diagram)5-72
5.72 GUIUserManagementModule:ModifyRole (Sequence Diagram)................................5-73
5.73 GUIUserManagementModule:RevokeRole (Sequence Diagram)................................5-74
5.74 GUIUserManagementModule:Startup (Sequence Diagram)..5-75

6 GUI Screen Captures..6-1
6.1 GUI:ScreenAccess (State Chart)...6-1
6.2 Change Own Password Dialog ...6-2
6.3 Command Status View ...6-2
6.4 Create Role Dialog..6-3
6.5 Create User Dialog..6-3
6.6 Dictionary Properties Dialog ..6-4
6.7 DMS Message Editor Dialog ..6-5
6.8 DMS Message Library Properties Dialog...6-6
6.9 DMS Properties Dialog...6-6
6.10 DMS Stored Message Item Properties Dialog ..6-7
6.11 GUI Toolbar..6-7
6.12 Login User Dialog...6-8
6.13 Plan Properties Dialog ..6-8
6.14 Role Configuration Dialog..6-9
6.15 Transfer Controlled Resources Dialog..6-10
6.16 User Configuration Dialog..6-10
6.17 Manage Logins Dialog..6-11

R1B1 GUI Detailed Design v 2/22/00

Table of Figures

Figure 3-1. Release1UseCaseDiagram (Use Case Diagram) ...3-1
Figure 4-1. R1B1GUIClassDiagram (Class Diagram)...4-1
Figure 4-2. DataModelClasses (Class Diagram)..4-6
Figure 4-3. NavigatorClasses (Class Diagram)..4-10
Figure 4-4. GUIDMSClasses (Class Diagram) ..4-13
Figure 4-5. GUIDictionaryModuleClasses (Class Diagram) ...4-18
Figure 4-6. GUIPlanClasses (Class Diagram)..4-21
Figure 4-7. GUIUserManagementClasses (Class Diagram) ..4-24
Figure 4-8. UtilityClasses (Class Diagram) ...4-26
Figure 4-9. SystemInterfaces (Class Diagram) ..4-32
Figure 4-10. JavaClasses (Class Diagram)...4-36
Figure 4-11. CORBAClasses (Class Diagram) ..4-38
Figure 5-1. GUI:ChangeUserBasic (Sequence Diagram) ..5-1
Figure 5-2. GUI:CommandObjectBasic (Sequence Diagram)...5-2
Figure 5-3. GUI:ConfigurePreferencesBasic (Sequence Diagram) ...5-3
Figure 5-4. GUI:DiscoveryBasic (Sequence Diagram)..5-4
Figure 5-5. GUI:LoginBasic (Sequence Diagram)...5-5
Figure 5-6. GUI:LogoutBasic (Sequence Diagram)...5-6
Figure 5-7. GUI:MakeMenuMultipleSelect (Sequence Diagram) ...5-7
Figure 5-8. GUI:MakeMenuNoneSelected (Sequence Diagram)...5-8
Figure 5-9. GUI:MakeMenuSingleSelect (Sequence Diagram)...5-9
Figure 5-10. GUI:ShutdownBasic (Sequence Diagram) ..5-10
Figure 5-11. GUI:StartupBasic (Sequence Diagram)...5-12
Figure 5-12. GUI:EventUpdatePushedBasic (Sequence Diagram)..5-13
Figure 5-13. GUI:SystemCommandBasic (Sequence Diagram)..5-14
Figure 5-14. DataModel:AttachObserver (Sequence Diagram)...5-15
Figure 5-15. DataModel:ObjectAdded_ (Sequence Diagram) ...5-16
Figure 5-16. DataModel:ObjectRemoved (Sequence Diagram) ..5-17
Figure 5-17. DataModel:ObjectUpdated (Sequence Diagram) ..5-18
Figure 5-18. DataModel:UpdateObservers (Sequence Diagram)...5-19
Figure 5-19. Navigator:AddNavigables (Sequence Diagram) ...5-20
Figure 5-20. Navigator:Initialize (Sequence Diagram)..5-21
Figure 5-21. Navigator:RemoveNavigables (Sequence Diagram) ...5-22
Figure 5-22. Navigator:TreeSelectionChange (Sequence Diagram)..5-23
Figure 5-23. GUIDMSModule:AddDMS (Sequence Diagram) ..5-24
Figure 5-24. GUIDMSModule:AddMessageToLibrary (Sequence Diagram)...5-25
Figure 5-25. GUIDMSModule:CreateMessageLibrary (Sequence Diagram)..5-26
Figure 5-26. GUIDMSModule:DeleteMessageLibrary (Sequence Diagram)..5-27
Figure 5-27. GUIDMSModule:DeleteStoredMessage (Sequence Diagram) ...5-28
Figure 5-28. GUIDMSModule:Login (Sequence Diagram) ..5-29
Figure 5-29. GUIDMSModule:Logout (Sequence Diagram) ..5-30
Figure 5-30. GUIDMSModule:EditLibraryMessage (Sequence Diagram)..5-31
Figure 5-31. GUIDMSModule:SetMessageLibraryProperties (Sequence Diagram) ...5-32

R1B1 GUI Detailed Design vi 2/22/00

Figure 5-32. GUIDMSModule:BlankDMS (Sequence Diagram)..5-33
Figure 5-33. GUIDMSModule:CreateNewPlanItem (Sequence Diagram)..5-34
Figure 5-34. GUIDMSModule:DeleteDMS (Sequence Diagram) ...5-35
Figure 5-35. GUIDMSModule:Shutdown (Sequence Diagram) 5-36
Figure 5-36. GUIDMSModule:Startup (Sequence Diagram) ..5-37
Figure 5-37. GUIDMSModule:Discovery (Sequence Diagram)..5-38
Figure 5-38. GUIDMSModule:ForcePoll (Sequence Diagram) ..5-39
Figure 5-39. GUIDMSModule:ModifyDMSSettings (Sequence Diagram)...5-40
Figure 5-40. GUIDMSModule:PutOnline (Sequence Diagram)..5-41
Figure 5-41. GUIDMSModule:Reset (Sequence Diagram) ...5-42
Figure 5-42. GUIDMSModule:SetMessage (Sequence Diagram) ...5-43
Figure 5-43. GUIDMSModule:ShowTrueDisplay (Sequence Diagram) ...5-44
Figure 5-44. GUIDMSModule:TakeOffline (Sequence Diagram)...5-45
Figure 5-45. GUIDictionaryModule:DictionaryProperties (Sequence Diagram)...5-46
Figure 5-46. GUIDictionaryModule:Discovery (Sequence Diagram) ...5-47
Figure 5-47. GUIDictionaryModule:EventHandling (Sequence Diagram)..5-48
Figure 5-48. GUIDictionaryModule:Shutdown (Sequence Diagram) ...5-49
Figure 5-49. GUIDictionaryModule:Startup (Sequence Diagram) ..5-50
Figure 5-50. GUIPlanModule:ActivatePlan (Sequence Diagram) ...5-51
Figure 5-51. GUIPlanModule:AddPlan (Sequence Diagram)..5-52
Figure 5-52. GUIPlanModule:CreatePlanItem (Sequence Diagram)...5-53
Figure 5-53. GUIPlanModule:Discovery (Sequence Diagram) ...5-54
Figure 5-54. GUIPlanModule:PlanItemAddedEvent (Sequence Diagram) ...5-55
Figure 5-55. GUIPlanModule:PlanItemRemovedEvent (Sequence Diagram)...5-56
Figure 5-56. GUIPlanModule:PlanRemovedEvent (Sequence Diagram) ..5-57
Figure 5-57. GUIPlanModule:RemovePlan (Sequence Diagram) ...5-58
Figure 5-58. GUIPlanModule:PlanAddedEvent (Sequence Diagram)...5-59
Figure 5-59. GUIPlanModule:RemovePlanItem (Sequence Diagram) ..5-60
Figure 5-60. GUIPlanModule:Shutdown (Sequence Diagram) ...5-61
Figure 5-61. GUIPlanModule:Startup (Sequence Diagram) ..5-62
Figure 5-62. GUIUserManagementModule:AddUser (Sequence Diagram) ..5-63
Figure 5-63. GUIUserManagementModule:ConfigureRoles (Sequence Diagram) ...5-64
Figure 5-64. GUIUserManagementModule:ConfigureUsers (Sequence Diagram) ...5-65
Figure 5-65. GUIUserManagementModule:CreateRole (Sequence Diagram) ..5-66
Figure 5-66. GUIUserManagementModule:DeleteRole (Sequence Diagram) ..5-67
Figure 5-67. GUIUserManagementModule:DeleteUser (Sequence Diagram) ..5-68
Figure 5-68. GUIUserManagementModule:ForceLogout (Sequence Diagram)..5-69
Figure 5-69. GUIUserManagementModule:GrantRole (Sequence Diagram)..5-70
Figure 5-70. GUIUserManagementModule:Login (Sequence Diagram)...5-71
Figure 5-71. GUIUserManagementModule:Discovery (Sequence Diagram) ..5-72
Figure 5-72. GUIUserManagementModule:ModifyRole (Sequence Diagram)...5-73
Figure 5-73. GUIUserManagementModule:RevokeRole (Sequence Diagram)...5-74
Figure 5-74. GUIUserManagementModule:Startup (Sequence Diagram)...5-75
Figure 6-1. GUI:ScreenAccess (State Chart) ...6-1

R1B1 GUI Detailed Design 1-1 2/22/00

1 Introduction

1.1 Purpose
This document describes the detailed design of the Chart II Graphical User Interface (GUI)
application for Release 1, Build 1. This design is driven by the Release 1, Build 1 requirements
as stated in document CHARTII-RS-001-00, “CHART II System Requirements Specification
For Release 1 Build 1.”

1.2 Objectives
The main objective of this design is to provide software developers with a framework in which to
provide implementation of the software components used to satisfy the requirements of Release
1, Build 1 of the Chart II system user interface. This document focuses on the client side of each
of the system use cases.

1.3 Scope
This design is limited to Release 1, Build 1 of the Chart II system and the requirements as stated
in the aforementioned requirements document.

1.4 Acronyms

The following acronyms appear throughout this document:

CORBA Common Object Request Broker Architecture

DMS Dynamic Message Sign

FMS Field Management Station

GUI CHART II Graphical User Interface application.

IDL Interface Definition Language

OMG Object Management Group

ORB Object Request Broker

R1B1 Release 1, Build 1 of the CHART II System

UML Unified Modeling Language

R1B1 GUI Detailed Design 1-2 2/22/00

1.5 References

CHART II System Requirements Specification For Release 1 Build 1, document number
CHARTII-RS-001-00, Computer Sciences Corporation and PB Farradyne, Inc.

CHART II High Level Design For Release 1 Build 1, document number M361-DS-001R0,
Computer Sciences Corporation and PB Farradyne, Inc.

CHART II GUI High Level Design For Release 1 Build 1, document number M361-DS-003R0,
Computer Sciences Corporation and PB Farradyne, Inc.

The Common Object Request Broker: Architecture and Specification, Revision 2.2, OMG
Document 98-02-33.

Martin Fowler and Kendall Scott, UML Distilled, Addison-Wesley, 1997.

1.6 Design Process
Object oriented analysis and design techniques were used in creating this design. As such, much
of the design is documented using diagrams that conform to the Unified Modeling Language
(UML), a de facto standard for diagramming object oriented designs.

The design process is very iterative, with each step possibly causing changes to previous steps.
Listed below is the process that was used to create the work products contained in this document:

• The team started by determining the system uses that would need designing. It was
determined that the GUI detailed design should model the client side of each transaction in
the system use cases. Thus, the use case diagram from document M-361-DS-001R0,
“CHART II High Level Design For Release 1 Build 1” was used.

• The team then created GUI screens that would be displayed to the user to collect and convey
necessary information. Captured images of these screens are contained in Appendix A of
this document.

• A straw man class diagram was created with major entities evident in the use cases being
listed as possible classes in the system. High level relationships between the classes were
discovered and documented on the class diagram.

• Additional class diagrams were added to depict third-party software objects and interfaces
which were needed in order to convey the intent of the design. Only classes and methods
shown on the sequence diagrams are included in diagrams for third party products.

• A sequence diagram was created for each use case, showing how the classes on the class
diagram would be used to perform the use case. This often involved changes to the class
diagram, such as adding classes, moving responsibilities between classes, or adding
operations to a class. Creation of the sequence diagrams frequently uncovered details that
required other sequence diagrams, or even proposed GUI screens to be modified.

R1B1 GUI Detailed Design 1-3 2/22/00

• After the process of creating sequence diagrams and associated changes to the class diagram,
internal reviews were used to resolve remaining issues.

1.7 Design Tools
The work products contained within this design are extracted from the COOL:JEX design tool.
Within this tool, the design is contained in the Chart II project, Release 1 configuration,
SystemDesign phase, system version R1B1GUI.

1.8 Work Products
This design contains the following work products:

• UML Class diagrams showing the high level software objects that will allow the system to
accommodate the uses of the system described in the Use Case diagram.

• UML Sequence diagrams showing how the classes interact to accomplish a particular system
function.

• GUI Screen Captures showing the information that will be conveyed to the operator and the
data elements the operator may modify.

• A UML state diagram modeling GUI screen navigation. This diagram shows which GUI
screens can be accessed from other GUI screens.

R1B1 GUI Detailed Design 2-1 2/22/00

2 Software Architecture
For a thorough discussion of how the CHART II GUI fits into the architecture of the CHART II
system please refer to the Software Architecture section of document M-361-DS-003R0,
“CHART II GUI High Level Design For Release 1 Build 1.”

The CHART II GUI application has been separated into a core GUI library which provides basic
functionality needed by all portions of the GUI, a data model which provides an implementation
of the subject-observer design pattern, and many installable modules which provide application
functionality. For the R1B1 version of the application, the GUI will be comprised of the
following installable modules. The DMS control module provides all DMS specific
functionality including DMS control and configuration, DMS message library creation and
modification and the creation and modification of DMS stored message plan items. The
Dictionary module provides an interface for modifying the contents of the system dictionary.
The Plan module provides an interface for creating a new plan and delegates creation of plan
items to other modules. The User Management module provides interfaces for configuring
system users and roles.

R1B1 GUI Detailed Design 3-1 2/22/00

3 Use Cases

3.1 Release1UseCaseDiagram (Use Case Diagram)

«extends»

«extends»

«uses»

«uses»

«extends»

«uses»

«uses»

«extends»

«extends»

«extends»

«uses»«extends»

«extends»

«extends»

«extends»

«extends»

«extends»

«extends»

«extends»
«extends»

«uses»

«extends»

«extends»

«extends»

«extends»

«extends»

«extends»

«extends»

«extends»

«extends»

«uses»

«extends»

«uses»

«extends»

«extends»

«extends»

«extends»

«uses»

«extends»

«extends»

Delete Role

Create New Role

Modify Role

Revoke Role

ManagePlans

Set DMS Name

Control DMS

Select Stored
Message

Delete User

Grant Role

Alarm

All use cases
use this

Can do all things
an Operator can do

Force Logout

Monitor
Controlled
ResourcesSystem

Watchdog

Poll DMS

View DMS Status

Set DMS Message

Administrator

Set DMS Polling Interval

Logout

Create DMS Message Library

Add
Banned

Word

Change User

Transfer
Responsibility Set DMS Offline

DeletePlan

Remove
Banned
Word

Add DMS

Delete DMS

ActivatePlan

Manage
DMS

Configuration

Add User

AddPlan

ModifyPlan

Log System
Operation

FMS
Subsystem

Set DMS Online

Modify DMS Settings

View DMS True Display

Manage Stored Messages

Delete DMS Message Library
Delete DMS

Stored Message

Set DMS Library Name

Create DMS
Stored Message

Modify DMS
Stored Message

Edit DMS Message Library

Manage Banned
Words

Manage Users

Operator

Login

Blank DMS

Reset DMS

Figure 3-1. Release1UseCaseDiagram (Use Case Diagram)

R1B1 GUI Detailed Design 4-1 2/22/00

4 Classes

4.1 R1B1GUIClassDiagram (Class Diagram)
This class diagram depicts the core classes and interfaces necessary to provide an extensible GUI
application framework for future CHART II development. Included are details of objects served
from the GUI application, an installable module framework, a core data model that provides the
framework for window updates when objects change, and a framework for system preference
configuration.

UserPreferenceSheet

CosEvent.
PushConsumer

1

GUIToolBar

0..1
1

1

CosEvent.
PushConsumer

GUI

1

CommandFailureView

java.awt.event.
ActionListener

NavigatorSupporter

DataModel

DiscoveryThread

java.lang.Runnable

1

1

EventConsumerGroup
1

CommandStatusImpl

UserLoginSession

ModelObserver

GUINavigatorDriver

*

GUIDMSModule

1

java.awt.event.ActionListener

1

1

GUIUserManagement
Module GUIDictionary

Module

1

UserLoginSessionImpl

Menuable

1

SystemPreferenceSupporter

CommandStatusView

GUIPlan
Module

CommandStatus

PreferenceRegisterable

0..1

UserPreferenceSupporter

PreferenceHelper1

*

1

InstallableModule

CommandStatusHandler

ModelObserver

1

1* *

java.awt.event.
ActionListener

addButton()
disableButton()
disableAllButtons()
enableButton()

CommandStatusHandler(orb, boa, datamodel)
createCommandStatus(description)

m_orb
m_boa

getID()
update()
completed()
getDescription()
getCreationTime()
getLastUpdateTime()
getLastStatusString()
hasCompleted()

m_description
m_creationTime
m_lastUpdateTime
m_lastStatusString
m_hasCompleted

getMSMenuStrings(accessToken)
getSSMenuStrings(accessToken)

registerUserPreferences(PreferenceRegisterable)
getUserPreferencePages()
validateUserPreferencePage()
handleValidUserPreferencePage()

registerSystemPreferences(PreferenceRegisterable)

registerPreference(key,defaultValue)
getSystemPreference(key)
setSystemPreference(key,value)
readSystemPreferences()
getUserPreference(key)
setUserPreference(key,value)
readUserPreferences()
saveUserPreferences()
viewUserPreferences()
clearUserPreferences()

addPage(page,UserPreferenceSupporter)
show

update(String status):void
completed(String final_status)

getOpCenter()
getUsername()
ping()
forceLogout()
getAccessToken()
setAccessToken()

m_accessToken

run()
shutdownThread()

update()

registerPreference(key,defaultValue)

startup()
getInstallableModules()
shutdown()
login()
logout()
getOpCenter()
getLoginSession()
getORB()
getBOA()
getEventConsumerGroup()
getTrader()
getToken()
getDataModel()
discoverEventChannels()
discoverObjects()
makeMenu(selectedObjects, useHeavyWeight)
-changeUser()
getPreferenceHelper()
getCommandStatusHandler()
getToolBar()

m_opCenter

update()

startup(orb)
discoverEventChannels(trader, eventConsumerGroup)
discoverObjects(trader, dataModel)
loggedIn()
loggedOut()
shutdown(orb)
getMenuStrings(accessToken)

Figure 4-1. R1B1GUIClassDiagram (Class Diagram)

4.1.1 CommandFailureView (Class)

This window will store the descriptions of command failures that have occurred. The failures
will be moved out of the command status view into the command failure view so that failures

R1B1 GUI Detailed Design 4-2 2/22/00

will not clutter up the command status view. This view also provides the user with a convenient
mechanism for reviewing system requests and commands which have failed, when they failed,
and the reasons for their failure.

4.1.2 CommandStatus (Class)

The CommandStatus class is used to allow a calling process to be notified of the progress of an
asynchronous operation. This is typically used by a GUI when field communications are
involved to complete a method call, allowing the GUI to show the user the progress of the
operation. The long running operation calls back to the CommandStatus object periodically as
the command is executed and makes a final call to the CommandStatus when the operation has
completed. The final call to the CommandStatus from the long running operation indicates the
success or failure of the command.

4.1.3 CommandStatusImpl (Class)

This class is the implementation of the CommandStatus CORBA interface. It will be created and
passed to a server when a command is to be executed so that the GUI can stay updated as the
command is executing.

4.1.4 CommandStatusView (Class)

This class is a window that will monitor the status of all pending commands that are in the
process of being executed. This class is an observer of the data model and, as such, will be
updated when objects are added, removed, or updated in the system.

4.1.5 CosEvent. PushConsumer (Class)

The PushConsumer interface is the interface to an event channel that a supplier of information
uses to push event updates to consumers who have previously attached to the channel.

4.1.6 java.awt.event. ActionListener (Class)

This interface listens for actions such as when a menu item or button is clicked. For menu items,
it is attached to menu items when the menu is built.

4.1.7 InstallableModule (Class)

This class is the basic interface that all installable modules must implement. It contains
functionality that all modules must support to be installable modules. This includes functionality
for startup, shutdown, login, logout, and the handling of system and user preferences.

4.1.8 PreferenceHelper (Class)

This class is delegated all of the system and user preference functionality for the GUI. This
includes registration, reading, writing, and accessing the preference values.

R1B1 GUI Detailed Design 4-3 2/22/00

4.1.9 Menuable (Class)

This interface allows an object to provide menu item strings and receive commands when the
corresponding menu items are clicked on. It supports both single selection and multiple
selection of Menuable objects. The getSSMenuItems() method should return the menu items to
display if the object is singly selected. The getMSMenuItems() method should return the menu
items that the Menuable object wishes to display if other Menuable objects are selected. The
access token is passed to these methods to allow the Menuable object to check the user’s access
rights before supplying the strings, so the user’s actions may be restricted.

4.1.10 SystemPreferenceSupporter (Class)

This interface will be implemented by any InstallableModules that wish to support their own
system preferences. They will be given a chance at startup to register their preferences. Then,
after the preferences have been read in, the modules can get access to the values when their
startup() method is called.

4.1.11 UserLoginSession (Class)

The UserLoginSession class is used to store information about a user that is logged into the
system. This object is served from the GUI and provides a means for the servers to call back into
the GUI process.

4.1.12 UserPreferenceSupporter (Class)

This interface will be implemented by any module that wishes to have user-specific preferences.
The module will be called before InstallableModule.loggedIn() to allow the preferences to be
registered. Then the preferences will be read, and will be available to the modules in the
loggedIn() method. Any module supporting user preferences should also supply property
page(s) so that the user can change the values of the preferences.

4.1.13 UserPreferenceSheet (Class)

This class is a property sheet that is used to present the user with the current user preferences. It
will be built by the GUI, and each installable module that supports user preferences will have a
chance to add one or more property pages to the property sheet.

4.1.14 GUI (Class)

This class is a singleton that contains all of the centralized functionality in the GUI. This
includes startup, shutdown, login, and logout. It manages the installable modules and controls all
functionality that requires the modules to be called. In addition, it stores all of the CORBA
object wrappers in the DataModel, which allows access to the objects and supports an update
mechanism to notify interested observers whenever the objects change.

4.1.15 GUIDMSModule (Class)

This module is an installable GUI module that handles all of the DMS-specific functionality.

R1B1 GUI Detailed Design 4-4 2/22/00

4.1.16 GUIDictionary Module (Class)

This class is an installable GUI module that handles all of the dictionary-specific functionality in
the GUI.

4.1.17 GUIPlan Module (Class)

This is an installable GUI module that handles the Plan functionality in the GUI. Other modules
that support plan items must attach their PlanItemCreationSupporters to the GUIPlanModule at
startup. The plan module will then call them as necessary when it is necessary to create a
specific type of GUIPlanItem.

4.1.18 DataModel (Class)

The data model class serves as a collection of objects. It provides an efficient lookup mechanism
for locating any object, and methods that allow for the retrieval of all objects of a particular type.
Additionally, this class provides the ability to attach observer objects that are notified when
objects are added to or removed from the model. Objects may also notify the DataModel that
they have been modified. The model will periodically notify all attached observers of the
changes to objects in the model.

4.1.19 GUIUserManagement Module (Class)

This class implements the InstallableModule interface and performs functionality for managing
user rights. It can be called to configure the roles and users, or to force a logout.

4.1.20 PreferenceRegisterable (Class)

This interface will be implemented by any class that wishes to support the registration of
preferences (otherwise known as properties or options). A preference is a key that has an
associated value. When registering a preference, a default value must be provided in case the
preference does not exist or cannot be read. The implementing class should store the registered
preferences until such a time as they can be read in. After the preferences are read in, the
implementing class should provide access to the preferences.

4.1.21 DiscoveryThread (Class)

This thread is used by the GUI to check for new event channels and served CORBA objects. It
will periodically call the GUI to find event channels and objects.

4.1.22 EventConsumerGroup (Class)

This class represents a collection of event consumers that will be monitored to verify that they do
not lose their connection to the CORBA event service. The class will periodically ask each
consumer to verify its connection to the event channel on which it is dependent to receive events.

R1B1 GUI Detailed Design 4-5 2/22/00

4.1.23 java.lang.Runnable (Class)

This interface allows the run method to be called from another thread using Java’s threading
mechanism.

4.1.24 ModelObserver (Class)

This interface must be implemented by any object that would like to attach to the DataModel as
an observer and get updated as system objects are added, deleted or changed.

4.1.25 GUINavigatorDriver (Class)

This class handles all of the Navigator-specific functionality for the GUI.

4.1.26 UserLoginSessionImpl (Class)

This class is the implementation of the CORBA UserLoginSession interface. It will be served
from the GUI and will be passed to the OperationsCenter on login. It will also store the access
token returned from the OperationsCenter.

4.1.27 CommandStatusHandler (Class)

This class provides functionality that allows the modules to deal with CommandStatus objects
for calling asynchronous methods without performing the housekeeping associated with serving
these objects. It provides a method for creating a CommandStatus object which will create the
object, attach it to the ORB, add it to the data model, and observe the data model waiting for the
CommandStatus object to complete. When it completes, this object will disconnect it from the
ORB and remove it from the data model.

4.1.28 GUIToolBar (Class)

This class will hold all of the top-level buttons and will be the launching point for invoking the
functionality of the CHART2 system. It will be created at startup, and each module may add any
toolbar buttons at that time. At Login, modules that have added toolbar buttons at startup should
enable any toolbar buttons that should be enabled (depending on access rights). The buttons will
be disabled by the GUI after they are added at startup and again at logout.

4.1.29 NavigatorSupporter (Class)

This interface must be implemented by any subsystem that supports invoking the Navigator. It
must be able to supply the Navigable objects, and also can support user interaction with the
selected Navigable objects through menus and drag/drop.

4.2 DataModelClasses (Class Diagram)
The data model classes represent a collection of objects that, when altered via the DataModel,
will notify observers that they have been modified. The notification will be delivered in the form
of a call to the observer’s update() method and will include a collection of changes that have
occurred in the system in the preceding interval. Each change is either an object added change,

R1B1 GUI Detailed Design 4-6 2/22/00

an object removed change, or an object updated change. If the change is an object updated
change it may include hints that help an observer determine if it needs to take any action based
on the change.

*

1

*

1

*

1

This is the class
which will be
used as a key to
store and look up
all Identifiable objects

ObjectUpdated

1

1

1
1

1

ChangeCollection

java.util.Hashtable

ObjectChange

ObjectAdded ObjectRemoved

UpdateHint

0..51

1 1
1

1

Identifier

1

ModelChange

GUIModelObserver

*1

*

GUIUpdaterjava.lang.Runnable

*

DataModel

UpdatePriorityLevel

ModelObserver

getChanges()
getChangeClass()
addChange(keyObject, objectChange)
isForClass(Class checkClass)

m_class

getObject()

m_object

getChanges()
getChanges(Class checkClass)
getClasses()
addChanges(checkClass, changes)
hasChanges()

run()

addHint()
getHints()
numHints()

getObject(keyObject)
getObjectsOfType(class)
getAllObjects()
attachObserver(modelObserver, priority)
detachObserver(modelObserver)
objectAdded(keyObject, object)
objectUpdated(keyObject, updateHint)
objectRemoved(keyObject)
setUpdateInterval(priority, interval)
getUpdateInterval(priority)

run()
getPriority()
isAttached(observer)
attach(observer)
detach(observer)
getUpdateInterval()
objectAdded(keyObject, object)
objectUpdated(keyObject, updateHint)
objectRemoved(keyObject)
setUpdateInterval()
-getChangeCollection(Class checkClass)
-getChangesAndReset()
-getObservers()
-updateObservers()

m_delay
m_priority

Identifier(byte[] chartID)
equals(Object obj)
hashCode()
byte[] getID()

m_id

update(ModelChanges changes)

Figure 4-2. DataModelClasses (Class Diagram)

R1B1 GUI Detailed Design 4-7 2/22/00

4.2.1 ChangeCollection (Class)

This class represents a collection of object changes. All object changes in the collection must be
for objects of the same type. This allows an observer to look at one object in the collection and
determine if it is interested in changes to this type of object. If the observer is not, it may ignore
the entire collection.

4.2.2 GUIModelObserver (Class)

Interface to be implemented by GUI components that would like to observe changes to the data
model. Observers of this type will be notified of changes on the GUI event dispatch thread.

4.2.3 GUIUpdater (Class)

This class is used to send all changes to GUIModelObservers in the GUI event dispatch thread. It
does this by storing the changes until the dispatch thread calls the run() method.

4.2.4 DataModel (Class)

The data model class serves as a collection of objects. It provides an efficient lookup mechanism
for locating any object, and methods that allow for the retrieval of all objects of a particular type.
Additionally, this class provides the ability to attach observer objects that are notified when
objects are added to or removed from the model. Objects may also notify the DataModel that
they have been modified. The model will periodically notify all attached observers of the
changes to objects in the model.

4.2.5 Identifier (Class)

Wrapper class for a CHART2 identifier byte sequence. This class will be used to add
identifiable objects to hash tables and perform subsequent lookup operations.

4.2.6 java.lang.Runnable (Class)

This interface allows the run method to be called from another thread using Java's threading
mechanism.

4.2.7 java.util.Hashtable (Class)

This class implements a hashtable, which is a data structure that maps keys to values. Any non-
null object can be used as a key or as a value. Objects used as keys implement the hashCode
method that is inherited by all objects from the java.lang.Object class.

4.2.8 ModelChange (Class)

This class is used to convey changes to observers of the DataModel. It contains all
ObjectChanges for a particular update priority level for a particular period of time.

R1B1 GUI Detailed Design 4-8 2/22/00

4.2.9 ModelObserver (Class)

This interface must be implemented by any object that would like to attach to the DataModel as
an observer and get updated as system objects are added, deleted or changed.

4.2.10 ObjectAdded (Class)

This class indicates that the object to which this class refers has been added to the model during
this period.

4.2.11 ObjectChange (Class)

This class represents the changes to a particular object stored in the DataModel for a particular
period. The change may be that this object was added to the model, removed from the model, or
updated during this period.

4.2.12 ObjectRemoved (Class)

This class indicates that the object to which it refers has been removed from the model.
Therefore, any observers receiving an ObjectRemoved must remove all stored references to the
object.

4.2.13 ObjectUpdated (Class)

This class indicates that an object that was already in the model has been updated. The update
may be specific to certain parts of the object, and the UpdateHint objects are used to specify
which data members within the object were changed. If there are no hints in the ObjectUpdated,
it signifies that the entire object has been changed so the observer must query the object for any
data members that it is displaying.

4.2.14 UpdateHint (Class)

This interface must be implemented by all objects that are to be used as update hints.

R1B1 GUI Detailed Design 4-9 2/22/00

4.2.15 UpdatePriorityLevel (Class)

This class represents a particular priority update level. When an observer attaches to the data
model an update priority level is specified. The system currently supports five levels of priority
ranging from real time updates for animated displays to delayed updates for windows which can
tolerate not being notified for a significant period of time when a change occurs to the system
data model. Each time an object is modified it is added to the ChangeCollection for all priority
levels. The notification of observers simply happens at longer and longer intervals as the priority
level decreases. Thus, an observer of the data model connected at real time may be updated
three times in one second while a lower priority observer may only be updated once at the end of
the second. However, both observers will be told about the exact same changes that occurred
during the second.

R1B1 GUI Detailed Design 4-10 2/22/00

4.3 NavigatorClasses (Class Diagram)

NavTreeModel
1

javax.swing.tree.
MutableTreeNode

javax.swing.table.
AbstractTableModel

NavTableModel

1

java.util.
Hashtable

*

1

1

1

* 1

*

1

1

1

1

*

GUINavigatorDriver

NavListDisplayable

Navigator
NavigatorSupporter

Navigable

NavTreeDisplayable

11

NavList

ModelObserver

javax.swing.tree.
DefaultTreeModel

1

1

1

1

1 1

NavTree

1

GUI
1

openNavigator(NavigatorSupporter) : Navigator
addNavigables(navigables)
updateNavigables(navigables)
removeNavigables(navigables)
getNavList

getNavigables() : Navigable []
makeMenu(selectedNavigables) : JMenu
dragOver(selectedNavigables,DropTargetDragEvent)
drop(selectedNavigables,DropTargetDropEvent)
navigatorClosing(Navigator)

getImage()
getDesc()
allowSetDesc()
setDesc()

addNavigables
updateNavigables
removeNavigables
getNavTreeDisplayable
setNavTreeDisplayable

m_navTreeDisplayable

getPropertyValue(property) : String
comparePropertyValues(property, val1, val2) : int

addNavigables
updateNavigables
removeNavigables
setSelectedNavTreeDisplayable
-removeTreeNode

getNavParent() : NavTreeDisplayable
containsChildNavigable(Navigable) : boolean
getChildNavigables() : Navigable[]
getNavPropertyList() : String []

Figure 4-3. NavigatorClasses (Class Diagram)

4.3.1 GUI (Class)

This class is a singleton that contains all of the centralized functionality in the GUI. This
includes startup, shutdown, login, and logout. It manages the installable modules and controls all
functionality that requires the modules to be called. In addition, it stores all of the CORBA
object wrappers in the DataModel, which allows access to the objects and supports an update
mechanism to notify interested observers whenever the objects change.

4.3.2 GUINavigatorDriver (Class)

This class handles all of the Navigator-specific functionality for the GUI.

R1B1 GUI Detailed Design 4-11 2/22/00

4.3.3 java.util. Hashtable (Class)

This class implements a hashtable, which is a data structure that maps keys to values. Any non-
null object can be used as a key or as a value. Objects used as keys implement the hashCode
method which is inherited by all objects from the java.lang.Object class.

4.3.4 ModelObserver (Class)

This interface must be implemented by any object that would like to attach to the DataModel as
an observer and get updated as system objects are added, deleted or changed.

4.3.5 Navigable (Class)

This interface will be implemented by any class that supports the Navigator on either the left or
right side (the tree or list view). This includes the functionality common to both the tree and list.

4.3.6 Navigator (Class)

This class represents one instance of the Navigator window. It supplies methods for opening the
Navigator window and for maintaining the collection of Navigables after the Navigator is open.

4.3.7 NavigatorSupporter (Class)

This interface must be implemented by any subsystem that supports invoking the Navigator. It
must be able to supply the Navigable objects, and also can support user interaction with the
selected Navigable objects through menus and drag/drop.

4.3.8 NavList (Class)

This class represents the right hand side of the Navigator window (the list or report). It contains
functionality for changing the NavTreeDisplayable to refill the list, and also for maintaining the
Navigables in the list after the Navigables belonging to the NavTreeDisplayable are already
displayed.

4.3.9 NavListDisplayable (Class)

This interface must be implemented by any object to be displayed on the right hand side of the
Navigator window, in the list view. In addition to the Navigable methods, it must also support
getting and comparing the strings for a given property (column) in the list.

R1B1 GUI Detailed Design 4-12 2/22/00

4.3.10 javax.swing.table. AbstractTableModel (Class)

This class provides a base implementation of the TableModel interface. This data structure will
be used to supply a JTable with data.

4.3.11 javax.swing.tree. DefaultTreeModel (Class)

This class is the data structure that is used as a foundation for the JTree class.

4.3.12 javax.swing.tree. MutableTreeNode (Class)

This interface extends the TreeNode interface and provides the ability to add and remove
children from nodes. It may be used in a TreeModel.

4.3.13 NavTableModel (Class)

This class will serve as the data structure for the right hand side of the Navigator, and will be the
foundation of the JTable which will display the data stored in the model.

4.3.14 NavTree (Class)

This class represents the left hand side of the Navigator window - the tree view. It contains
functionality for maintaining the NavTreeDisplayable objects that are in the tree.

4.3.15 NavTreeDisplayable (Class)

This interface must be implemented by any objects that are to be added to the left side of the
Navigator (the tree view). This contains all of the functionality to support the tree data structure
and also provides the property list (column headers) which will be displayed in the list view
when the NavTreeDisplayable is selected.

4.3.16 NavTreeModel (Class)

This class will provide the data structure that will support the tree structure on the left hand side
of the Navigator.

R1B1 GUI Detailed Design 4-13 2/22/00

4.4 GUIDMSClasses (Class Diagram)

1

1

1

1

DMSNavGroup

DMSLibraryNavGroup

1

1

1

1

GUIModelObserver

DMSPropertiesDialog

1

1

MultiFormatter

MultiParseListener

InstallableModule

GUIDMSStoredMsgItem

DataModel

11

java.awt.event.KeyListener

GUIDMSModule

NavTreeDisplayable

1

GUIDMSMessageLibrary

DMSMessageLibrary

1 *

NavListDisplayableMenuable

DMSMessageView SHAMultiFormatter DefaultMultiFormatter

1

1

DMSTrueDisplay

1

1

Menuable

DMSMessageLibraryProperties
11

1

1

0,1

1

DMSStoredMsgItemProperties

*

GUIDMS

NavListDisplayableIdentifiable

DMS

PlanItem

DMSStoredMsgItem

1 1

CosEvent.PushConsumer

java.awt.event.ActionListener

DMSMessageEditor

1

1

GUIDictionary

1

1

11

GUIDMSStoredMessage

DMSStoredMessage

GUIPlanItem

PlanItemCreationSupporter

GUIPlan

1

1 1

* DMSPropertiesDialog(dms, currentConfig)
show()

plainTextToMulti(text)

DMSMessageEditor(dms, initialMessage)
DMSMessageEditor(dmsList, initialMessage)
DMSMessageEditor(storedMessage, geometries, fonts)
setMessageFormatter(formatter)
show()

GUIDMSStoredMsgItem(plan, dmsStoredMsgItem)
getDMS()
getMessage()
setDMS()
setMessage()
doProperties()
setMsgItemData(dms, storedMsg)

push

DMSStoredMsgItemProperties(messageItem)
show()

DMSTrueDisplay(dms, message)

GUIDMSMessageLibrary(DMSMessageLibrary)
createMessageLibrary(name)
getID()
getName()
setName(name)
doProperties()
remove()
getPlansUsingMessage()
addMessage()
createNewMessage()

DMSMessageLibraryProperties(library)
show()

get()
addDMS()
getDictionary()
getLibraryNavGroup()
getDMSNavGroup()
getFonts()
getGeometries()

showMessage

m_signGeometry
m_fontGeometry

getID()
remove()
doProperties()
setMessageData()

m_signGeometry
m_fontGeometry

getID
getMessageDescription
setMessageDescription
getMessageContent
setMessageContent
getMinCharacters
remove

GUIDMS(dms)
takeOffline()
putOnline()
blankSign()
remove()
pollNow()
resetController()
doProperties()
getConfiguration()
setConfiguration()
setMessage()
getMessage()
updateMessageCache()
showTrueDisplay()

Figure 4-4. GUIDMSClasses (Class Diagram)

R1B1 GUI Detailed Design 4-14 2/22/00

4.4.1 CosEvent.PushConsumer (Class)

The PushConsumer interface is the interface to an event channel that a supplier of information
uses to push event updates to consumers who have previously attached to the channel.

4.4.2 DefaultMultiFormatter (Class)

This class is the default implementation of the MultiFormatter interface that is used by the
DMSMessageEditor upon creation. It is possible to change the parsing used by the editor by
setting the installed MultiFormatter. This implementation formats the messages using a very
simple algorithm which left justifies each line and fills pages from the top down.

4.4.3 DMS (Class)

This class represents a Dynamic Message Sign (DMS). It has attributes and methods for
controlling and maintaining the status of the DMS within the system.

4.4.4 DMSLibraryNavGroup (Class)

This class provides a navigator group under which all DMS message libraries will appear.

4.4.5 DMSNavGroup (Class)

This class provides a navigator group under which all DMS objects will appear.

4.4.6 DMSMessageLibraryProperties (Class)

This class implements a dialog box that will be used to modify the properties of a
GUIDMSMessageLibrary.

4.4.7 DMSMessageView (Class)

This class implements a window which is capable of displaying any MULTI formatted DMS
message as a pixmap in order to give the operator an idea of how the message will look on a
particular sign.

4.4.8 DMSStoredMsgItem (Class)

This class represents a plan item that is used to associate a stored DMS message with a specific
DMS. When the item is activated, it sets the message of the DMS to the stored message to
which it is linked.

4.4.9 DMSPropertiesDialog (Class)

This class is responsible for the display and processing of the DMS Properties dialog box that
allows a user to configure the properties of a particular DMS.

R1B1 GUI Detailed Design 4-15 2/22/00

4.4.10 GUIDMS (Class)

This class provides a wrapper for the DMS interface. This is the class that the other GUI
components will interact with in order to perform GUI operations such as create a menu for the
DMS.

4.4.11 GUIDMSModule (Class)

This module is an installable GUI module that handles all of the DMS-specific functionality.

4.4.12 GUIDMSStoredMsgItem (Class)

This class wraps a plan item for a DMS. This is done to cache the data locally as well as to give
the item GUI-specific functionality.

4.4.13 GUIPlan (Class)

This class is a GUI wrapper for the Plan object. The wrapping is done to cache the data locally
for faster access, as well as to give the Plan some GUI-specific functionality such as menus and
command handling.

4.4.14 DMSStoredMessage (Class)

This class represents a stored DMS message that is created by the DMS Message Editor and
stored in the database. It can be displayed on multiple DMS models and contains an attribute
stating the minimum width of a sign that can display the message in its entirety.

4.4.15 GUIDMSStoredMessage (Class)

This class will wrap a DMSStoredMessage object in order to allow it to perform GUI specific
functionality. It delegates operations to the wrapped object.

4.4.16 Identifiable (Class)

This interface will be implemented by all classes that are to be identifiable within the system.
The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

4.4.17 GUIPlanItem (Class)

This is a base class for all of the GUIPlanItem classes. Each GIUPlanItem object will serve as a
GUI wrapper to cache the plan item data locally and also to handle all user interaction in the
GUI, such as menus and command handling.

4.4.18 InstallableModule (Class)

This class is the basic interface that all installable modules must implement. It contains
functionality that all modules must support to be installable modules. This includes functionality
for startup, shutdown, login, logout, and the handling of system and user preferences.

R1B1 GUI Detailed Design 4-16 2/22/00

4.4.19 Menuable (Class)

This interface allows an object to provide menu item strings and receive commands when the
corresponding menu items are clicked on. It supports both single selection and multiple
selection of Menuable objects. The getSSMenuItems() method should return the menu items to
display if the object is singly selected. The getMSMenuItems() method should return the menu
items that the Menuable object wishes to display if other Menuable objects are selected. The
access token is passed to these methods to allow the Menuable object to check the user's access
rights before supplying the strings, so the user's actions may be restricted.

4.4.20 NavTreeDisplayable (Class)

This interface must be implemented by any objects that are to be added to the left side of the
Navigator (the tree view). This contains all of the functionality to support the tree data structure
and also provides the property list (column headers) which will be displayed in the list view
when the NavTreeDisplayable is selected.

4.4.21 MultiFormatter (Class)

This interface must be implemented by classes which convert plain text DMS messages to
MULTI formatted messages.

4.4.22 MultiParseListener (Class)

A MultiParseListener works in conjunction with the MultiConverter to allow an implementing
class to be notified as parsing of a MULTI message occurs. An exemplary use of a
MultiParseListener would be the MessageView window that will need to have the MULTI
message parsed in order to display it as a pixmap.

4.4.23 DataModel (Class)

The data model class serves as a collection of objects. It provides an efficient lookup mechanism
for locating any object, and methods that allow for the retrieval of all objects of a particular type.
Additionally, this class provides the ability to attach observer objects that are notified when
objects are added to or removed from the model. Objects may also notify the DataModel that
they have been modified. The model will periodically notify all attached observers of the
changes to objects in the model.

4.4.24 DMSMessageEditor (Class)

This class is responsible for allowing an operator to set the current message on a DMS. It also
updates a MessageView to allow the operator to preview the message as it will look on the
selected sign, prior to sending the message to the sign controller.

4.4.25 GUIDMSMessageLibrary (Class)

This class wraps a DMSMessageLibrary object in order to allow it to perform GUI specific
operations. It will delegate operations to the wrapped object.

R1B1 GUI Detailed Design 4-17 2/22/00

4.4.26 DMSMessageLibrary (Class)

This class represents a logical collection of stored DMS messages that are stored in the database.

4.4.27 DMSStoredMsgItemProperties (Class)

This class will provide a dialog that will allow an operator to edit the properties of a
DMSStoredMessageItem.

4.4.28 GUIDictionary (Class)

This class is a GUI wrapper for the Dictionary class. It adds functionality for caching the data
and for adding GUI-specific functionality such as menus and Navigator support.

4.4.29 PlanItem (Class)

This class represents an action within the system that can be planned in advance. This abstract
class is subclassed for specific actions that can be planned in the system.

4.4.30 DMSTrueDisplay (Class)

This class is responsible for recognizing that a DMS message has changed and updating the
associated MessageView in order to convey that change to the operator.

4.4.31 GUIModelObserver (Class)

Interface to be implemented by GUI components that would like to observe changes to the data
model. Observers of this type will be notified of changes on the GUI event dispatch thread.

4.4.32 java.awt.event.ActionListener (Class)

This interface listens for actions such as when a menu item or button is clicked. For menu items,
it is attached to menu items when the menu is built.

4.4.33 NavListDisplayable (Class)

This interface must be implemented by any object to be displayed on the right hand side of the
Navigator window, in the list view. In addition to the Navigable methods, it must also support
getting and comparing the strings for a given property (column) in the list.

4.4.34 PlanItemCreationSupporter (Class)

This interface must be implemented in any modules that wish to support the plan module. The
modules must attach their PlanItemCreationSupporters at startup. The GUIPlanModule will then
call the supporter when it is time to display the Plan menu or to create a specific type of plan
item or GUIPlanItem.

4.4.35 java.awt.event.KeyListener (Class)

R1B1 GUI Detailed Design 4-18 2/22/00

Interface that a class must realize in order for objects of that class to be notified when the user
presses a key.

4.4.36 SHAMultiFormatter (Class)

This class is the implementation of the MultiFormatter interface that will use the MDSHA
defined message formatting algorithm. It will be aware of the desired justification, line ordering
per page and special word connection requirements of this algorithm.

4.5 GUIDictionaryModuleClasses (Class Diagram)

*
1

* 1

* 1

*1
DataModel

1

1
javax.swing.JFrameGUIModelObserver

ModelObserver

1

NavListDisplayable
Menuable

NavTreeDisplayable

java.awt.event.
ActionListener

*

GUIDictionaryModule

GUIDictionary

InstallableModuleCosEvent.PushConsumer

Dictionary

DictionaryPropertiesDialog

11

GUIDictionaryNavGroup

Navigable

Identifiable

GUI

get()

getBannedWords(accessToken) :String[]
removeBannedWordList(accessToken, bannedWords)
addBannedWordList(accessToken, bannedWords)
checkForBannedWords(messageToCheck, delimiters) : String[]
bannedWordsAdded(wordList)
bannedWordsRemoved(wordList)
refreshBannedWordListCache()

m_wordList

addDictionary(dictionary)

Figure 4-5. GUIDictionaryModuleClasses (Class Diagram)

4.5.1 CosEvent.PushConsumer (Class)

The PushConsumer interface is the interface to an event channel that a supplier of information
uses to push event updates to consumers who have previously attached to the channel.

4.5.2 Dictionary (Class)

R1B1 GUI Detailed Design 4-19 2/22/00

This class is used to check for banned words in a message that may be displayed on a DMS. In
addition to methods for checking the words, it has methods to allow the contents of the
dictionary to be changed.

4.5.3 DictionaryPropertiesDialog (Class)

This dialog is the editing interface which allows the user to view, add, and remove banned words
from a given dictionary.

4.5.4 GUIDictionary (Class)

This class is a GUI wrapper for the Dictionary class. It adds functionality for caching the data
and for adding GUI-specific functionality such as menus and Navigator support.

4.5.5 GUIDictionaryModule (Class)

This class is an installable GUI module that handles all of the dictionary-specific functionality in
the GUI.

4.5.6 DataModel (Class)

The data model class serves as a collection of objects. It provides an efficient lookup mechanism
for locating any object, and methods that allow for the retrieval of all objects of a particular type.
Additionally, this class provides the ability to attach observer objects that are notified when
objects are added to or removed from the model. Objects may also notify the DataModel that
they have been modified. The model will periodically notify all attached observers of the
changes to objects in the model.

4.5.7 GUIDictionaryNavGroup (Class)

This class is used to support the required Navigator functionality to group the GUIDictionaries
together for the purpose of being displayed together under one branch of the Navigator tree.

4.5.8 GUIModelObserver (Class)

Interface to be implemented by GUI components that would like to observe changes to the data
model. Observers of this type will be notified of changes on the GUI event dispatch thread.

4.5.9 Identifiable (Class)

This interface will be implemented by all classes that are to be identifiable within the system.
The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

4.5.10 InstallableModule (Class)

R1B1 GUI Detailed Design 4-20 2/22/00

This class is the basic interface that all installable modules must implement. It contains
functionality that all modules must support to be installable modules. This includes functionality
for startup, shutdown, login, logout, and the handling of system and user preferences.

4.5.11 javax.swing.JFrame (Class)

Java class that displays a frame window.

4.5.12 Menuable (Class)

This interface allows an object to provide menu item strings and receive commands when the
corresponding menu items are clicked on. It supports both single selection and multiple
selection of Menuable objects. The getSSMenuItems() method should return the menu items to
display if the object is singly selected. The getMSMenuItems() method should return the menu
items that the Menuable object wishes to display if other Menuable objects are selected. The
access token is passed to these methods to allow the Menuable object to check the user's access
rights before supplying the strings, so the user's actions may be restricted.

4.5.13 GUI (Class)

This class is a singleton that contains all of the centralized functionality in the GUI. This
includes startup, shutdown, login, and logout. It manages the installable modules and controls all
functionality that requires the modules to be called. In addition, it stores all of the CORBA
object wrappers in the DataModel, which allows access to the objects and supports an update
mechanism to notify interested observers whenever the objects change.

4.5.14 java.awt.event. ActionListener (Class)

This interface listens for actions such as when a menu item or button is clicked. For menu items,
it is attached to menu items when the menu is built.

4.5.15 ModelObserver (Class)

This interface must be implemented by any object that would like to attach to the DataModel as
an observer and get updated as system objects are added, deleted or changed.

4.5.16 Navigable (Class)

This interface will be implemented by any class that supports the Navigator on either the left or
right side (the tree or list view). This includes the functionality common to both the tree and list.

4.5.17 NavListDisplayable (Class)

This interface must be implemented by any object to be displayed on the right hand side of the
Navigator window, in the list view. In addition to the Navigable methods, it must also support
getting and comparing the strings for a given property (column) in the list.

R1B1 GUI Detailed Design 4-21 2/22/00

4.5.18 NavTreeDisplayable (Class)

This interface must be implemented by any objects that are to be added to the left side of the
Navigator (the tree view). This contains all of the functionality to support the tree data structure
and also provides the property list (column headers) which will be displayed in the list view
when the NavTreeDisplayable is selected.

4.6 GUIPlanClasses (Class Diagram)

0..1

1

11

PlanItem
11

DataModel

*

1

1

*

1
Plan

11

InstallableModule
NavListDisplayable

NavTreeDisplayable

*

GUIPlanModule
GUIPlanItem

*

GUIPlanNavGroup

CosEvent.
PushConsumer

1*

PlanItemCreationSupporter

GUIPlan

Identifiable Menuable

java.awt.event.
ActionListener

1 addGUIPlan
removeGUIPlan

get()
addPlanItemSupporter()
getPlanItemSupporters()

GUIPlanItem(PlanItem, GUIPlan)
-setName(name)
getName()
getGUIPlan()
getPlanItem()
-remove()
-modify()

m_name

getPlanItemCreationMenuStrings(accessToken) : String[]
createGUIPlanItem(planItem) : GUIPlanItem
createNewGUIPlanItem(accessToken, plan, menuString) : void

setName(item)
getName()
addGUIPlanItem(guiPlanItem)
removeGUIPlanItem(guiPlanItem)
addItem(planItem)
removeItem(planitem)
doProperties()
createFromProperties()
-remove()
-activate()
-storeSupporterMenuStringAssociation()
-clearSupporterMenuStringAssociations()

Figure 4-6. GUIPlanClasses (Class Diagram)

4.6.1 DataModel (Class)

The data model class serves as a collection of objects. It provides an efficient lookup mechanism
for locating any object, and methods that allow for the retrieval of all objects of a particular type.
Additionally, this class provides the ability to attach observer objects that are notified when
objects are added to or removed from the model. Objects may also notify the DataModel that
they have been modified. The model will periodically notify all attached observers of the
changes to objects in the model.

4.6.2 GUIPlan (Class)

This class is a GUI wrapper for the Plan object. The wrapping is done to cache the data locally
for faster access, as well as to give the Plan some GUI-specific functionality such as menus and
command handling.

R1B1 GUI Detailed Design 4-22 2/22/00

4.6.3 GUIPlanItem (Class)

This is a base class for all of the GUIPlanItem classes. Each GIUPlanItem object will serve as a
GUI wrapper to cache the plan item data locally and also to handle all user interaction in the
GUI, such as menus and command handling.

4.6.4 GUIPlanModule (Class)

This is an installable GUI module that handles the Plan functionality in the GUI. Other modules
which support plan items must attach their PlanItemCreationSupporters to the GUIPlanModule
at startup. The plan module will then call them as necessary when it is necessary to create a
specific type of GUIPlanItem.

4.6.5 PlanItem (Class)

This class represents an action within the system that can be planned in advance. This abstract
class is subclassed for specific actions that can be planned in the system.

4.6.6 CosEvent. PushConsumer (Class)

The PushConsumer interface is the interface to an event channel that a supplier of information
uses to push event updates to consumers who have previously attached to the channel.

4.6.7 GUIPlanNavGroup (Class)

This class is the branch in the Navigator tree that contains all of the GUIPlan objects. It will
provide functionality for displaying a menu for creating new plans.

4.6.8 Menuable (Class)

This interface allows an object to provide menu item strings and receive commands when the
corresponding menu items are clicked on. It supports both single selection and multiple
selection of Menuable objects. The getSSMenuItems() method should return the menu items to
display if the object is singly selected. The getMSMenuItems() method should return the menu
items that the Menuable object wishes to display if other Menuable objects are selected. The
access token is passed to these methods to allow the Menuable object to check the user's access
rights before supplying the strings, so the user's actions may be restricted.

4.6.9 Identifiable (Class)

This interface will be implemented by all classes that are to be identifiable within the system.
The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

4.6.10 NavTreeDisplayable (Class)

This interface must be implemented by any objects that are to be added to the left side of the
Navigator (the tree view). This contains all of the functionality to support the tree data structure
and also provides the property list (column headers) which will be displayed in the list view
when the NavTreeDisplayable is selected.

R1B1 GUI Detailed Design 4-23 2/22/00

4.6.11 Plan (Class)

This class has a collection of Plan Items that it maintains. It has functionality for changing the
plan items, and also allows the plan to be activated, which has the effect of activating each plan
item in the plan.

4.6.12 InstallableModule (Class)

This class is the basic interface that all installable modules must implement. It contains
functionality that all modules must support to be installable modules. This includes functionality
for startup, shutdown, login, logout, and the handling of system and user preferences.

4.6.13 java.awt.event. ActionListener (Class)

This interface listens for actions such as when a menu item or button is clicked. For menu items,
it is attached to menu items when the menu is built.

4.6.14 NavListDisplayable (Class)

This interface must be implemented by any object to be displayed on the right hand side of the
Navigator window, in the list view. In addition to the Navigable methods, it must also support
getting and comparing the strings for a given property (column) in the list.

4.6.15 PlanItemCreationSupporter (Class)

This interface must be implemented in any modules that wish to support the plan module. The
modules must attach their PlanItemCreationSupporters at startup. The GUIPlanModule will then
call the supporter when it is time to display the Plan menu or to create a specific type of plan
item or GUIPlanItem.

R1B1 GUI Detailed Design 4-24 2/22/00

4.7 GUIUserManagementClasses (Class Diagram)

0..1

1

UserLoginsDialog

java.awt.event.
ActionListener

InstallableModule

CreateUserDialogCreateRoleDialog

0..11

GUIUserManagementModule

UserConfigurationDialog
11

RoleConfigurationDialog

UserManager

createdUser(userName)

createdRole(role,description)
-getRoleFunctionalRights() : rightsList
-setRoleFunctionalRights(rightsList)

-forceLogout()

get()
getUserManager()
configureUsers()
configureRoles()
getOpenedUserConfigDialog()
setOpenedUserConfigDialog()
getOpenedRoleConfigDialog()
setOpenedRoleConfigDialog()

Figure 4-7. GUIUserManagementClasses (Class Diagram)

4.7.1 CreateRoleDialog (Class)

This dialog allows the administrator to create a new role.

R1B1 GUI Detailed Design 4-25 2/22/00

4.7.2 CreateUserDialog (Class)

This dialog allows the administrator to create a new user.

4.7.3 GUIUserManagementModule (Class)

This class implements the InstallableModule interface and performs functionality for managing
user rights. It can be called to configure the roles and users, or to force a logout.

4.7.4 InstallableModule (Class)

This class is the basic interface that all installable modules must implement. It contains
functionality that all modules must support to be installable modules. This includes functionality
for startup, shutdown, login, logout, and the handling of system and user preferences.

4.7.5 java.awt.event. ActionListener (Class)

This interface listens for actions such as when a menu item or button is clicked. For menu items,
it is attached to menu items when the menu is built.

4.7.6 UserLoginsDialog (Class)

This dialog displays a list of currently logged in users and allows the administrator to force one
or more users to be logged out.

4.7.7 UserManager (Class)

The UserManager provides access to data dealing with user management. This includes users,
roles, and functional rights. The UserManager is largely an interface to the User Management
database tables.

4.7.8 RoleConfigurationDialog (Class)

This dialog allows the administrator to configure the roles in the system. It supports the Create
Role, Delete Role, and Set Role Functional Rights functionality. If the user does not have role
configuration rights, all editing functionality will be disabled.

4.7.9 UserConfigurationDialog (Class)

This dialog allows the administrator to view or configure the users' roles, assuming the roles
have been defined. It supports the Create User, Delete User, Change User Password, Grant Role
and Revoke Role functionality. If the user has view rights but not configuration rights, all
configuration abilities will be disabled.

R1B1 GUI Detailed Design 4-26 2/22/00

4.8 UtilityClasses (Class Diagram)

*

1

MultiFormatter

1

PushEventSupplier

*

* 1

java.lang.Runnable

EventConsumerGroup

1 *

CosEventChannelAdmin.EventChannel

1

1
logs message
using

Log

11

BucketSet

*

1

PushEventConsumer

DBConnectionManager

Identifiable

ServiceApplicationModule

Identifier

OpLogQueue

ServiceApplicationProperties

1

1

2

1

EventConsumer

CommandQueue

1

OpLogMessage

ServiceApplication

DefaultServiceApplication

LogFile

FunctionalRight

MultiParseListener

*1

1

MultiConverter

TokenManipulator

QueueableCommand

FMS

1

ObjectRemovalListener

IdentifiableLookupTable

1*

IdentifierGenerator

java.util.Properties

1

1..*

1

OperationsLog

createIdentifier()
areIdentifiersEqual()

add(comparable)
remove(comparable)
removeAll()
getElements(int)
size()
isEmpty()

m_comparables

String m_actionDesc
String m_actionType
String m_opCenter
Date m_timeStamp
String m_user

PushEventConsumer(channel, pushConsumer)

m_event_channel
m_pushConsumer

log(Object obj, String message, int level)
logStack(Object obj, String message, int level, Throwable th)
setKeepDays(int days)
setLogFileName(String fileName)
getKeepDays()
getLogFileName()
OpenLogFile()
setLogLevel(int level)
getLogLevel()
deleteLogFiles(Date presentTime)

m_logFileName
m_keepDays
m_logFile
m_creationDate
m_defFileName
m_logLevel

get():Log;
log()
logStack()

m_instance

plainTextToMulti(text)

getConnection():java.sql.Connection
releaseConnection();
shutdown();

Identifier(byte[] chartID)
equals(Object obj)
hashCode()
byte[] getID()

m_id

PushEventSupplier(EventChannelFactory factory, String channelName, PushSupplier supplier)
getChannel():EventChannel;
getMaxReconnectInterval(void):int;
setMaxReconnectInterval(int seconds):void;
push(Any data):void;
disconnectPushConsumer(void):void;

OpLogQueue()
put()
flush()
getFirstMessage()
removeFirstMessage()

m_logQueueTime

verifyConnection()
connect()
isEqual(consumer)

objectRemoved(Object obj):void;

getID()

run()

getProperty()
setProperty()

add(consumer)
setInterval()
remove(consumer)
-hasConsumer(consumer)
-verifyConnections()

for_consumers()
for_suppliers()
destroy()

OperationsLog(DBConnectionManager db)
log()
flushLog
shutdown

initialize(ServiceApplication app):boolean
shutdown(ServiceApplication app):boolean
getOfferIDs():int[]

ServiceApplicationProperties(
String propertiesFilename)
getProperties()
getDefaultProperties()
getThreadModel():int
getThreadPoolSize():int
getDatabaseConnectString():String
getDatabaseUserName():String
getDatabasePassword():String
getModuleNames():String[]
getNetConnectionSite():String

start
shutdown
getORB():ORB
getBOA():BOA
getTradingRegister():CosTrading.Register
getTradingLookup():CosTrading.Lookup
getEventChannelFactory():EventChannelFactory
getDBConnectionManager():DBConnectionManager
getOperationsLog():OperationsLog
getProperties():java.util.Properties
getDefaultProperties():java.util.Properties

DefaultServiceApplication(String propertiesFilename)
-writeOffersToFile(String moduleName, int[] offerIDs):boolean
-removeOffersFromFile(String moduleName):boolean

addCommand(QueueableCommand cmd)
shutdown()
-getNextCommand():QueueableCommand

m_commands
m_shutdown

TokenManipulator()
createToken(userName, opCenterID, opCenterName)
optimize(operation, orgFilter)
add(userToken, operation, orgFilter)
add(userToken, operation)
remove(userToken, operation, orgFilter)
remove(userToken, operation)
getOpCenterName(userToken)
getOpCenterID(userToken)
getHostName(userToken)
getUserName(userToken)
checkAccess(userToken, operation, orgFilter)
checkAccess(userToken, operation)
hasRight(userToken, operation, orgFilter)
validateToken(userToken)
calcCheckSum(userToken)
printToken(userToken)
printNybble(nybble)

multiToPlainText(multi)
plainTextToMulti(text, formatter)
parseMulti(multi, listener)

description()
enumerate()
fromInt()
name()
value()

ConfigureDMS
ConfigureSelf
ConfigureUsers
ForceDMSPoll
ManageDeviceComms
ManageDictionary
ManageUserLogins
ModifyMessageLibrary
ModifyPlans
ResetDMSGroup
SetDMSMessage
TransferAnySharedResource
UsePlans
ViewDictionary
ViewUserConfig
ViewUserLogins

addDMS
removeDMS
blankSign
stopPolling
startPolling
forcedPoll
resetController
setMessage
getMessage
setPollInterval
getPollInterval
setCommLostTimeout
getCommLostTimeout
getAsyncPollingResults

execute()
interrupted()

messageTxt(text)
lineJustification(justify)
newLine(pixelSkip)
newPage()
pageDisplayTime(timeOn, timeOff)
unknownTag(tag)
parseComplete()

put(Identifiable)
find(identifier)
remove(identifier)
elements()
size()

Figure 4-8. UtilityClasses (Class Diagram)

4.8.1 CosEventChannelAdmin.EventChannel (Class)

The event channel is a service that decouples the communication between suppliers and
consumers of information.

R1B1 GUI Detailed Design 4-27 2/22/00

4.8.2 DBConnectionManager (Class)

This class implements a database connection manager that manages a pool of database
connections. Any CHART II system thread requiring database access gets a database connection
from the pool of connections maintained by this manager class. The connections are maintained
in two seperate lists namely, inUseList and freeList. The inUseList contains connections that
have already been assigned to a thread. The freeList contains unassigned connections. This class
assumes that an appropriate JDBC driver has been loaded either by using the "jdbc.drivers"
system property or by loading it explicitly. The class has a monitor thread that is started by the
constructor. This connection monitor thread periodically checks the inuseList to see if there are
connections that are owned by dead threads and move such connections to the freeList. The
connection monitor thread is started only if a non-zero value is specified for the monitoring time
interval in the constructor.

4.8.3 DefaultServiceApplication (Class)

This class is the default implementation of the ServiceApplication interface. This class is passed
a properties file during construction. This properties file contains configuration data used by this
class to set the ORB concurrency model, determine which ORB services need to available,
provide database connectivity, etc. The properties file also contains the class names of service
modules that should be served by the service application. During startup, the
DefaultServiceApplication instantiates the service application module classes listed in the
properties file and initializes each.

The DefaultServiceApplication maintains a file of offers that have been exported to the Trading
Service. Each module must provide an implementation of the getOfferIDs method and be able to
return the offer ids for each object they have exported to the trader during their initialization.
The DefaultServiceApplication stores all offer IDs in a file during its startup. Each module is
expected to remove its offers from the trader during a shutdown. If the
DefaultServiceApplication is not shutdown properly, it uses its offer ID file to clean-up old
offers prior to initializing modules during its next start. This keeps multiple offers for the same
object from being placed in the trader.

4.8.4 EventConsumer (Class)

This interface provides the methods that any EventConsumer object that would like to be
managed in an EventConsumerGroup must implement.

4.8.5 EventConsumerGroup (Class)

This class represents a collection of event consumers that will be monitored to verify that they do
not lose their connection to the CORBA event service. The class will periodically ask each
consumer to verify its connection to the event channel on which it is dependent to receive events.

4.8.6 CommandQueue (Class)

The CommandQueue class provides a queue for QueuableCommand objects. The
CommandQueue has a thread that it uses to process each QueuableCommand in a first in first out

R1B1 GUI Detailed Design 4-28 2/22/00

order. As each command object is pulled off the queue by the CommandQueue's thread, the
command object's execute method is called, at which time the command performs its intended
task.

4.8.7 FMS (Class)

This class represents the CHART II system's interface to the FMS SNMP manager. Most
methods included in this class have an associated method in the FMS SNMP Manager DLL
provided by the FMS Subsystem. The other methods in this class exist to provide easier
interface to the DLL. As an example, this class contains a blankSign method that actually calls
setMessage on the FMS Subsystem with the message set to blank and beacons off.

4.8.8 FunctionalRight (Class)

This class acts as an enumuration that lists the types of functional rights possible in the CHART2
system. It contains a static member for each possible functional right.

4.8.9 Identifiable (Class)

This interface will be implemented by all classes that are to be identifiable within the system.
The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

4.8.10 Identifier (Class)

Wrapper class for a CHART2 identifier byte sequence. This class will be used to add
identifiable objects to hash tables and perform subsequent lookup operations.

4.8.11 OpLogQueue (Class)

This class is a queue for messages that are to be put into the system's Operations Log.
Messages added to the queue can be removed in FIFO order.

4.8.12 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel. The
user of this class can pass a reference to the event channel factory to this object. The constructor
will create a channel in the factory. The push method is used to push data on the event channel.
The push method is able to detect if the event channel or its associated objects have crashed.
When this occurs, a flag is set, causing the push method to attempt to reconnect the next time
push is called. To avoid a supplier with a heavy supply load from causing reconnect attempts to
occur too frequently, a maximum reconnect interval is used. This interval specifies the quickest
reconnect interval that can be used. The push method uses this interval and the current time to
determine if a reconnect should be attempted, thus reconnects can be throttled indepently of a
supplier's push rate.

4.8.13 IdentifiableLookupTable (Class)

This class uses a hash table implementation to store Identifiable objects for fast lookups.

R1B1 GUI Detailed Design 4-29 2/22/00

4.8.14 ObjectRemovalListener (Class)

This interface is implemented by objects that wish to be notified of objects being removed from
the system. This is typically used by objects that store a collection of other objects, such as a
factory, to allow them to remove objects from their collection when the object is to be removed
from the system.

4.8.15 BucketSet (Class)

This class is designed to contain a collection of comparable objects. All of the objects added to
this collection must be of the same concrete type. Each element in the collection has an
associated counter that tracks how many times this element has been added. It is then possible to
get only the elements which have been added to the collection n times where n is a positive
integer value. This class is very useful for creating GUI menu's for multiple objects as it allows
all objects to insert their menu items and then allows the user to get only those items which all
objects inserted.

4.8.16 IdentifierGenerator (Class)

This class is used to create and manipulate identifiers that are to be used in Identifiable objects.

4.8.17 java.lang.Runnable (Class)

This interface allows the run method to be called from another thread using Java’s threading
mechanism.

4.8.18 java.util.Properties (Class)

The Properties class represents a persistent set of properties. The Properties can be saved to a
stream or loaded from a stream. Each key and its corresponding value in the property list is a
string. A property list can contain another property list as its "defaults"; this second property list
is searched if the property key is not found in the original property list.

4.8.19 Log (Class)

Singleton log object to allow applications to easily create and utilize a LogFile object for system
trace messages.

4.8.20 LogFile (Class)

This class creates a flat file for writing system trace log messages and purges them at user
specified interval. The log files created by this class are used for system debugging and
maintenance only and are not to be confused with the system operations log which is modeled by
the OperationsLog class.

R1B1 GUI Detailed Design 4-30 2/22/00

4.8.21 OperationsLog (Class)

This class provides the functionality to add a log entry to the Chart II operations log. At the time
of instantiation of this class, it creates a queue for log entries. When a user of this class provides
a message to be logged, it creates a time-stamped OpLogMessage object and adds this object to
the OpLogQueue. Once queued, the messages are written to the database by the queue driver
thread in the order they were queued.

4.8.22 PushEventConsumer (Class)

This class is a utility class that will be responsible for connecting a consumer implementation to
an event channel, and maintaining that connection. When the verifyConnection method is called,
this object will determine if the channel has been lost and will attempt to re-connect to the
channel if it has.

4.8.23 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes are
notified when their host service is initialized and when it is shutdown. The implementing class
can use these notifications along with the services provided by the invoking ServiceApplication
to perform actions such as object creation and publication.

4.8.24 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a ChartII
service application. These services include providing access to basic CORBA objects that are
needed by service applications, such as the ORB, BOA, Trader, and Event Service.

4.8.25 ServiceApplicationProperties (Class)

This class provides methods that allow the DefaultServiceApplication to access the necessary
properties from the java properties configuration file. It also provides a default properties file
which can be retrieved by anyone holding a ServiceApplication interface reference. This gives
each installed service module the opportunity to load default values before retrieving property
values from the properties file.

4.8.26 TokenManipulator (Class)

This class contains all functionality required for user rights in the system. It is the only code in
the system that knows how to create, modify and check a user's functional rights. It encapsulates
the contents of an octet sequence which will be passed to every secure method. Secure methods
should call the checkAccess method to validate the user. Client processes should use the check
access method to verify access and optimize to reduce reduce the size of the sequence to only
those rights which are necessary to invoke the secure method. The token contains the following
information: Token version, Token ID, Token Time Stamp, Username, Op Center ID, Op Center
IOR, and functional rights.

R1B1 GUI Detailed Design 4-31 2/22/00

4.8.27 MultiFormatter (Class)

This interface must be implemented by classes which convert plain text DMS messages to
MULTI formatted messages.

4.8.28 MultiParseListener (Class)

A MultiParseListener works in conjunction with the MultiConverter to allow an implementing
class to be notified as parsing of a MULTI message occurs. An exemplary use of a
MultiParseListener would be the MessageView window that will need to have the MULTI
message parsed in order to display it as a pixmap.

4.8.29 MultiConverter (Class)

This class provides methods that perform conversions between the DMS MULTI mark-up
language and plain text. It also provides a method that will parse a MULTI message and inform
a MultiParseListener of elements found in the message.

4.8.30 OpLogMessage (Class)

This class holds data for a message to be stored in the system’s Operations Log.

4.8.31 QueueableCommand (Class)

A QueuableCommand is an abstract class used to represent a command that can be placed on a
queue for asynchronous execution. Derived classes implement the execute method to specify the
actions taken by the command when it is executed.

4.9 SystemInterfaces (Class Diagram)
This class diagram shows the interfaces from the High Level Design that are defined using IDL.
These interfaces are included as reference and are included on other class diagrams in this
design.

R1B1 GUI Detailed Design 4-32 2/22/00

UserLoginSession

OperationsCenter

SharedResourceManager

Organization

DMSFactory

Dictionary

DMSMessageLibrary

DMSStoredMessage

DMS

CommandStatus

DMSControl.Configuration

constructs
DMS objects

using

*1

*1 * 1

UserManager

CommEnabled

SharedResource

DMSLibraryFactory

1*

*1

1 *

Service

DMSControl.SignMetrics DMSControl.FontMetrics

1

1

1

1

checks msg
contents using

*1

*

1

Owns

Is Owned By1

*

PlanItemPlanPlanFactory

*1 *1

DMSStoredMsgItem

long fmsDeviceID;
string name;
Organization owningOrg;
SignType signType;
SignMetrics signMetrics;
FontMetrics fontMetrics;
long pages;
string agentHostName;
string SNMPCommunityName;
boolean configurableCommTimeout;
long dmsTimeCommLoss;
long pollInterval;

getDMS
getMessage
setDMS
setMessage

getOpCenter
getUsername
ping
forceLogout

getID
getName
loginUser(UserLoginSession,name,password)
logoutUser
changeUser
getNumLoggedInUsers
isUserLoggedIn
getControlledResources
getLoginSessions
transferSharedResources
forceLogout
- setSessionLoggingOut

getResources
getControlledResources(OpCenterID)
hasControlledResources(OpCenterID)

getID
getName

createDMS
getDMSList

getID
checkForBannedWords
addBannedWordList
removeBannedWordList
getBannedWords

getID
setName
getName
addMessage
removeMessage
getStoredMessages
getPlansUsingLibrary
getPlansUsingMessage
remove

getID
getMessageDescription
setMessageDescription
getMessageContent
setMessageContent
getMinCharacters
remove

setName
getName
setMessage
getMessage
blankSign
isBlank
setPollInterval
getPollInterval
getMaxPollInterval
getStatusChangeTime
getStatus
resetController
pollNow
getSignMetrics
getFontMetrics
getMaxPages
setCommLossTimeout
getCommLossTimeout
getOperationalStatus
getNetConnectionSite
createPlanItem
remove
getSignType
setConfiguration
getConfiguration

update(String status):void
completed(String final_status)

takeOffline
putOnline
isOffline

getID
setControllingOpCenter
getControllingOpCenter
getControllingOpCenterName
clearControllingOpCenter
getOwnerOrg

createLibrary
getLibraryList

getID
setName
getName
activate
remove
isUsingObject

getID
setName
getName
addItem
removeItem
activate
getItems
isUsingObject
remove

createPlan
getPlans
getPlansUsingObject

createUser
deleteUser
getUsers
getRoles
getUserRoles
getRoleFunctionalRights
setRoleFunctionalRights
createRole
deleteRole
changeUserPassword
setUserRoles
grantRole
revokeRole
setUserPassword

long vmsSignHeightPixels;
long vmsSignWidthPixels;
short vmsCharacterHeightPixels
short vmsCharacterWidthPixels

short fontHeight;
short characterWidth;

ping
getName():string;
getNetConnectionSite():string;
oneway shutdown(AccessToken token):void

Figure 4-9. SystemInterfaces (Class Diagram)

R1B1 GUI Detailed Design 4-33 2/22/00

4.9.1 CommandStatus (Class)

The CommandStatus class is used to allow a calling process to be notified of the progress of an
asynchronous operation. This is typically used by a GUI when field communications are
involved to complete a method call, allowing the GUI to show the user the progress of the
operation. The long running operation calls back to the CommandStatus object periodically as
the command is executed and makes a final call to the CommandStatus when the operation has
completed. The final call to the CommandStatus from the long running operation indicates the
success or failure of the command.

4.9.2 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can have their communications
turned on or off. This typically only applies to field devices.

4.9.3 Dictionary (Class)

This class is used to check for banned words in a message that may be displayed on a DMS. In
addition to methods for checking the words, it has methods to allow the contents of the
dictionary to be changed.

4.9.4 DMS (Class)

This class represents a Dynamic Message Sign (DMS). It has attributes and methods for
controlling and maintaining the status of the DMS within the system.

4.9.5 UserLoginSession (Class)

The UserLoginSession class is used to store information about a user that is logged into the
system. This object is served from the GUI and provides a means for the servers to call back into
the GUI process.

4.9.6 DMSControl.Configuration (Class)

This typedef defines data that is used to identify the configuration of a DMS in the system.

4.9.7 DMSControl.FontMetrics (Class)

This typedef is included in the IDL to specify the data to be passed to/from operations to
initialize or query the size of the font used by a DMS.

4.9.8 DMSControl.SignMetrics (Class)

This typedef is included in the IDL to specify the data included in operations that initialize or
query the size of a DMS.

R1B1 GUI Detailed Design 4-34 2/22/00

4.9.9 DMSStoredMsgItem (Class)

This class represents a plan item that is used to associate a stored DMS message with a specific
DMS. When the item is activated, it sets the message of the DMS to the stored message to
which it is linked.

4.9.10 OperationsCenter (Class)

The OperationsCenter represents a center where one or more users are located. This class is used
to log users into the system. If the username and password provided to the loginUser method are
valid, the caller is given a token that contains information about the user and the functional rights
of the user. This token is then used to call privileged methods within the system. Shared
resources in the system are either available or under the control of an OperationsCenter. The
OperationsCenter keeps track of users that are logged in so that it can ensure that the last user
does not log out while there are shared resources under its control. This list of logged in users is
also available for monitoring system usage or to force users to logout for system maintenance.

4.9.11 DMSLibraryFactory (Class)

This class is used to create new DMS libraries and maintain them in a collection.

4.9.12 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared resources.
Implementing classes must be able to provide a list of all shared resources under their
management. Implementing classes must also be able to tell others if there are any resources
under its management that are controlled by a given operations center.

4.9.13 DMSFactory (Class)

The DMSFactory provides a means to create new DMS objects to be added to the system.

4.9.14 DMSMessageLibrary (Class)

This class represents a logical collection of stored DMS messages which are stored in the
database.

4.9.15 DMSStoredMessage (Class)

This class represents a stored DMS message that is created by the DMS Message Editor and
stored in the database. It can be displayed on multiple DMS models and contains an attribute
stating the minimum width of a sign that can display the message in its entirety.

R1B1 GUI Detailed Design 4-35 2/22/00

4.9.16 Organization (Class)

The Organization class represents an organization that participates in the Chart system through
ownership of shared resources. The Organization can be used in conjunction with functional
rights to determine the level of access users have to shared resources owned by a given
organization. This allows access to be granted to a user to perform controlled operations on
shared resources owned by one organization but not another.

4.9.17 PlanFactory (Class)

This class creates, destroys, and maintains the collection of plans that can be used in the system.

4.9.18 Service (Class)

This interface is implemented by all services in the system that allow themselves to be shutdown
externally. All implementing classes provide a means to be cleanly shutdown and can be pinged
to detect if they are alive.

4.9.19 Plan (Class)

This class has a collection of Plan Items that it maintains. It has functionality for changing the
plan items, and also allows the plan to be activated, which has the effect of activating each plan
item in the plan.

4.9.20 PlanItem (Class)

This class represents an action within the system that can be planned in advance. This abstract
class is subclassed for specific actions that can be planned in the system.

4.9.21 SharedResource (Class)

The SharedResource interface is implemented by any object that must always have an operations
center responsible for the disposition of the resource while the resource is in use.

4.9.22 UserManager (Class)

The UserManager provides access to data dealing with user management. This includes users,
roles, and functional rights. The UserManager is largely an interface to the User Management
database tables.

R1B1 GUI Detailed Design 4-36 2/22/00

4.10 JavaClasses (Class Diagram)
This package is included for reference to classes included in the Java programming language that
are used in class and sequence diagrams for other packages within this design.

java.awt.event.KeyListener
java.awt.event.ActionListener

java.lang.Runnable

java.lang.Object

javax.swing.JOptionPane

javax.swing.JFrame

javax.swing.tree.
DefaultTreeModel

java.util.Hashtable

java.util.Properties

javax.swing.table.
AbstractTableModel

javax.swing.tree.
MutableTreeNode

show

keyPressed
keyReleased
keyTyped

hashCode()
equals()

actionPerformed()

getProperty()
setProperty() run()

showMessageDialog
showOptionDialog

Figure 4-10. JavaClasses (Class Diagram)

4.10.1 java.awt.event.ActionListener (Class)

This interface listens for actions such as when a menu item or button is clicked. For menu items,
it is attached to menu items when the menu is built.

R1B1 GUI Detailed Design 4-37 2/22/00

4.10.2 java.lang.Object (Class)

This is the base class from which all Java classes inherit.

4.10.3 java.lang.Runnable (Class)

This interface allows the run method to be called from another thread using Java's threading
mechanism.

4.10.4 java.util.Hashtable (Class)

This class implements a hashtable, which is a data structure that maps keys to values. Any non-
null object can be used as a key or as a value. Objects used as keys implement the hashCode
method that is inherited by all objects from the java.lang.Object class.

4.10.5 java.util.Properties (Class)

The Properties class represents a persistent set of properties. The Properties can be saved to a
stream or loaded from a stream. Each key and its corresponding value in the property list is a
string. A property list can contain another property list as its "defaults"; this second property list
is searched if the property key is not found in the original property list.

4.10.6 javax.swing.table. AbstractTableModel (Class)

This class provides a base implementation of the TableModel interface. This data structure will
be used to supply a JTable with data.

4.10.7 javax.swing.tree. DefaultTreeModel (Class)

This class is the data structure that is used as a foundation for the JTree class.

4.10.8 javax.swing.tree. MutableTreeNode (Class)

This interface extends the TreeNode interface and provides the ability to add and remove
children from nodes. It may be used in a TreeModel.

4.10.9 java.awt.event.KeyListener (Class)

Interface that a class must realize in order for objects of that class to be notified when the user
presses a key.

4.10.10 javax.swing.JFrame (Class)
Java class that displays a frame window.

4.10.11 javax.swing.JOptionPane (Class)

This class is used to display popup messages to an end user.

R1B1 GUI Detailed Design 4-38 2/22/00

4.11 CORBAClasses (Class Diagram)
The CORBAUtilities package exists to provide reference to classes that are supplied by the ORB
Vendor and are referenced by other packages’ class or sequence diagrams.

CosEvent.
PushConsumer

CosEventChannelAdmin.
EventChannel

ORB BOA

com.ooc.CosEventChannelAdmin.impl.EventChannel

CosTrading.Lookup

CosTrading.Register

query

export
withdraw

pushfor_consumers()
for_suppliers()
destroy()

init()
BOA_init()
connect()
disconnect()
resolve_initial_references()
string_to_object()
object_to_string()

impl_is_ready
deactivate_impl

Figure 4-11. CORBAClasses (Class Diagram)

4.11.1 BOA (Class)

The BOA (Basic Object Adapter) is a class that assists implementation objects in using the ORB.
Typical services provided include attaching and detaching object implementations to and from
the ORB and generation of object references.

R1B1 GUI Detailed Design 4-39 2/22/00

4.11.2 com.ooc.CosEventChannelAdmin.impl.EventChannel (Class)

This class is the ORB vendor's implementation of a CORBA event channel. The event service
provided by the vendor simply serves one of these objects. The Extended Event Service serves a
factory that allows multiple instances of the vendor supplied event channel to be created.

4.11.3 CosEventChannelAdmin. EventChannel (Class)

The event channel is a service that decouples the communication between suppliers and
consumers of information.

4.11.4 CosEvent. PushConsumer (Class)

The PushConsumer interface is the interface to an event channel that a supplier of information
uses to push event updates to consumers who have previously attached to the channel.

4.11.5 CosTrading.Lookup (Class)

The CORBA trading service is an application that CORBA servers and clients use for object
publication and discovery respectively. The CosTrading.Lookup is the interface that
applications use to discover objects that have previously been published.

4.11.6 CosTrading.Register (Class)

The CORBA trading service is an application that CORBA servers and clients use for object
publication and discovery respectively. The CosTrading.Register is the interface to the trading
service that server applications use to publish objects in order to make them available for client
applications to discover.

4.11.7 ORB (Class)

The CORBA ORB (Object Request Broker) provides a common object oriented, remote
procedure call mechanism for inter-process communication. The ORB is the basic mechanism
by which client applications send requests to server applications and receive responses to those
requests from servers.

R1B1 GUI Detailed Design 5-1 2/22/00

5 Sequence Diagrams

5.1 GUI:ChangeUserBasic (Sequence Diagram)
This diagram shows the steps that will be taken in the GUI when a user change occurs without
first logging out. The new user will be logged in and the previous user will be logged out, then
all windows are closed and the new user’s preferences are loaded to replace the previous
preferences. If the changeUser command fails, the previous user will still be logged in and the
new user will not be logged in.

setAccessToken

clearUserPreferences

PreferenceHelper

delete
(previous login session)

Operator
GUI UserLoginSessionImpl OperationsCenter InstallableModule

changeUser

create
(new login session)

changeUser
[failure]

Display Error

[* for each module]
loggedOut

Close Windows

[* for each module]
registerUserPreferences

[* for each module]
loggedIn

[* for each preference]
registerPreference

readUserPreferences

UserPreference
Supporter

Figure 5-1. GUI:ChangeUserBasic (Sequence Diagram)

R1B1 GUI Detailed Design 5-2 2/22/00

5.2 GUI:CommandObjectBasic (Sequence Diagram)
This diagram shows the basic steps involved in issuing a typical command to an object. The
context menu is built when the user right clicks on one or more selected objects. At this time the
GUI wrapper object will be added as an ActionListener and will receive the command if any of
its menu items are clicked on. (See the sequence diagrams GUI:MakeMenuSingleSelect and
GUI:MakeMenuMultipleSelect for more details). If a long-running command is invoked, the
object will create a CommandStatusImpl object, put it in the DataModel, and pass it to the server
so that the server can call back as the command is completed. When the server calls the
CommandStatusImpl's completed() method, the CommandStatusImpl will remove itself from the
DataModel. If the command fails, the Command Failures window will add the command status
to its displayed list.

DataModel

update

getToken

See GUI:EventUpdatePushedBasic
for a description of how the
asynchronous command will
update data will be processed.

update

update

update

The command
failure view
will ignore all
updates except
ones that show
command failures.

See the sequence diagrams:
GUI:MakeMenuSingleSelect
GUI:MakeMenuMultipleSelect
GUI:MakeMenuNoneSelected

command queued or error

command queued or error

[a command menu
item was clicked]
actionPerformed

[context menu
invoked]

makeMenu

(select objects)

The Menuable object was
added as an action
listener when the
menu was made.

update

ORB

connect (CommandStatusImpl)

Command
Failure
ViewCommandStatusView

update() will be
called some time
later than the
DataModel
is called.

Object
Service

GUI

getDataModel

Menuable

Operator

CommandStatusImpl

Served
CORBA
Object

objectRemoved

completed

objectUpdated

update

update

create

objectAdded

Call The Asynchronous Command

Figure 5-2. GUI:CommandObjectBasic (Sequence Diagram)

R1B1 GUI Detailed Design 5-3 2/22/00

5.3 GUI:ConfigurePreferencesBasic (Sequence Diagram)
This diagram shows the steps necessary to change user preferences (a.k.a. options or properties).
When the user clicks on the “Preferences” menu item, the GUI will ask each installed module to
return zero or more property pages. The GUI will then construct a property sheet, add the pages
to the propery sheet and show it. Each module can call the GUI to retrieve the values to use in
the property pages. If the user clicks on OK or Apply, the GUI will ask each module to validate
the property page that it supplied. If any fields are invalid, the module should set the focus to the
offending control and return false so that the user can correct the mistake. If all pages are valid,
the GUI will ask each module to handle the property page. This will cause the modules to call
the GUI's setUserPreference(). When all preferences are set, the property sheet will call the GUI
to save all of the preferences.

UserPreferenceSupporter
implementing class

getPreferenceHelper

PreferenceHelper

storeUserPreferences

[* for each preference in pages]
getUserPreference

saveUserPreferences

Operator
GUI PreferenceSheet

If a page is not
valid then the
module should
set the focus
to the offending
control and
give the user
a chance to
correct the input.[invalid input]

(display error)

[clicked OK]
close

viewUserPreferences
[* for each module implementing

UserPreferenceSupporter]
getUserPreferencePages

(property sheet
displayed)

[* for each page]
addPage

[clicked OK or Apply] [* for each page]
validateUserPreferencePage

[all pages valid]
[* for each page]

handleValidUserPreferencePage

[* for each preference]
setUserPreference

getPreferenceHelper

getPreferenceHelper

getInstallableModules

UserManager

show

click on
View Options

Figure 5-3. GUI:ConfigurePreferencesBasic (Sequence Diagram)

R1B1 GUI Detailed Design 5-4 2/22/00

5.4 GUI:DiscoveryBasic (Sequence Diagram)
This diagram shows the ongoing discovery of event channels and served CORBA objects. In the
GUI's startup, it will start the DiscoveryThread, which will periodically search for new event
channels and objects until the GUI shuts down. The event channels are discovered before the
objects to prevent the dropping of events just after the objects are discovered. First, the GUI
looks for resource watchdog event channels, which will inform the user if resources are
controlled by an Operations Center which does not have any logged in users, then it asks the
modules to look for the module-specific event channels. If any event channels are found, they
are added to the EventConsumerGroup, which will maintain the connection to the event channel
if the event service goes down and is restarted. The GUI will then ask each module to discover
the objects that it is interested in. Each module will look up the object factory in the trader, and
ask the object factory for all of its objects. Then, the module will check whether the CORBA
object already has a GUI wrapper object stored in the DataModel. If it doesn't, it will create a
new wrapper object and add it to the DataModel. Any ModelObservers that are attached to the
DataModel will be subsequently informed of the new wrapper objects.

Get
Initialization

Data

The discovery thread
will periodically execute
the following logic in a loop.
The timing of the loop may
 be configurable through
the system preferences.

GUI

DiscoveryThread GUI CosTrading.Lookup

PushEventConsumer

InstallableModule
implementing class EventConsumerGroup

start

discoverEventChannels query (resource watchdog
event channels)

[* for each resource
watchdog event channel]

create

discoverObjects

Test whether the
object already exists
in the data model to
avoid unnecessary
initialization calls across
the network.

GUI
CORBA object

wrapper
[* for each new object]

create

[* for each new
wrapper object]

objectAdded

The factories are
retrieved (rather than
each object) to reduce
network timeouts if the
objects are in the
trader but the server
is down.

served
CORBA
object DataModel

[* for each object factory]
Get Objects

[* for each object]
getObject

getDataModel

[* for each module-specific
 event channel]

create

[* for each watchdog event channel]
add

[* for each module]
discoverEventChannels

Module-specific
CORBA object

factory

[* for each module-specific
 event channel]

add

[* for each module]
discoverObjects query (module-specific

object factories)

query (module-specific
event channels)

Figure 5-4. GUI:DiscoveryBasic (Sequence Diagram)

R1B1 GUI Detailed Design 5-5 2/22/00

5.5 GUI:LoginBasic (Sequence Diagram)
This diagram shows what steps must be taken at login. The GUI creates a
UserLoginSessionImpl and passes it to the OperationsCenter for login. The GUI will then store
the AccessToken in the UserLoginSessionImpl for later use. The GUI will then ask each module
to register its user preferences, then it will read the preferences and call each module's loggedIn()
method.

enableButton(Navigator)
enableButton(Command Status)

enableButton(Transfer Shared Resources)
enableButton(Change User)

enableButton(Logout)

UserLoginSessionImpl

InstallableModule
Operator

GUI OperationsCenter

login
create

loginUser

[* for each module implementing
UserPreferenceSupporter]
registerUserPreferences

disableButton(Login)

setAccessToken

[failure]
delete

User
Preference
Supporter PreferenceHelper

[* for each preference]
registerUserPreference

readUserPreferences

[* for each module]
loggedIn

[failure]
display error

GUIToolBar

Figure 5-5. GUI:LoginBasic (Sequence Diagram)

R1B1 GUI Detailed Design 5-6 2/22/00

5.6 GUI:LogoutBasic (Sequence Diagram)
First the GUI will call the OperationsCenter to log the user out. If any shared resources are still
assigned to the Op Center, the logout will fail and the user will need to transfer the shared
resources to another Op Center. If successful, the GUI will call each installable module's
loggedOut() method, then it will close all windows and clear the user's preferences.

PreferenceHelper GUIToolBar

disableAllButtons
enableButton(Login)
enableButton(Exit)

clearUserPreferences

OperationsCenter
Operator

GUI UserLoginSessionImpl

logout
logoutUser

[failure]
has assigned resources

delete

[* for each module]
loggedOut

close
windows

InstallableModule

This will check
for assigned
resources

Figure 5-6. GUI:LogoutBasic (Sequence Diagram)

R1B1 GUI Detailed Design 5-7 2/22/00

5.7 GUI:MakeMenuMultipleSelect (Sequence Diagram)
This diagram shows how a menu is created when two or more GUI wrapper objects are selected.
The GUI's makeMenu method determines that there are multiple objects selected, and it creates a
BucketSet that it will use to count the menu items. Then it asks each selected object to supply
the multiple-selection menu items. The menu item strings are put into the BucketSet and then
retrieved. The only strings that are retrieved from the BucketSet are those which have the same
number of instances as there are selected objects. The GUI then creates menu items for the
strings and attaches all selected objects as ActionListeners to each representative menu item.

The access token
is passed to restrict
the user's actions,
if applicable, depending
on the users' rights.

[any of the selected
objects are not Menuable]

return

GUI Menuable

getElements

Any
GUI
View

Display Menu

[* for each common menu item]
[* for each Menuable object]

addActionListener

makeMenu

javax.swing.JMenuItem
or

java.awt.MenuItem

BucketSet

Operator

[* for each selected
Menuable object]

getMSMenuStrings

[* for each menu string
with the same number

of votes as selected objects]
create

create

[* for each selected Menuable object]
[* for each menu string]

add

[operator invokes
context menu with

multiple objects selected]
Invoke Menu

Figure 5-7. GUI:MakeMenuMultipleSelect (Sequence Diagram)

R1B1 GUI Detailed Design 5-8 2/22/00

5.8 GUI:MakeMenuNoneSelected (Sequence Diagram)
This diagram shows how a menu is created when no GUI wrapper objects are selected. The
GUI's makeMenu method determines that there are no objects selected, and the GUI then adds its
own global menu items and calls each module to get their menu item strings. The GUI, and each
installable module that supplies menu item strings, are then attached as ActionListeners to the
menu items so that they will be called when the user clicks on the menu items.

The access token
is used to restrict
the user's actions,
if applicable, depending
on the users' rights.

Operator

Any
GUI
View

[* for each module]
getMenuStrings

[* for each system menu item]
create

[* for each system menu item]
addActionListener(GUI)

[* for each module
menu string]

create
[* for each menu item]

addActionListener(module)

makeMenu

Display Menu

javax.swing.JMenuItem
or

java.awt.MenuItem

GUI InstallableModule

[operator invokes
context menu

with no objects selected]
Invoke Menu

Figure 5-8. GUI:MakeMenuNoneSelected (Sequence Diagram)

R1B1 GUI Detailed Design 5-9 2/22/00

5.9 GUI:MakeMenuSingleSelect (Sequence Diagram)
This diagram shows how a menu is created when exactly one GUI wrapper object is selected.
The GUI's makeMenu method determines that there is one object selected, and it asks the
Menuable object for the single-select menu item strings. The GUI will then create all of the
menu items and attach the Menuable object as an ActionListener to each of the menu items.

The access token is passed
to restrict the operations
the user can perform if the
users' rights are restricted.

Any
GUI
View

GUI
Menuable

implementing class

javax.swing.JMenuItem
or

java.awt.MenuItem

[operator invokes
context menu with

one object selected]
makeMenu

[implements Menuable]
getSSMenuStrings

[* for each menu item]
create

[* for each menu item]
addActionListener(Menuable object)

Display Menu

Figure 5-9. GUI:MakeMenuSingleSelect (Sequence Diagram)

R1B1 GUI Detailed Design 5-10 2/22/00

5.10 GUI:ShutdownBasic (Sequence Diagram)
This diagram shows steps necessary for a shutdown. The operator either closes the GUIToolBar
or clicks on the Exit button. Either of these actions will result in the GUI's shutdown method
being called. The GUI will then call each module's shutdown() method. The GUI will then call
deactivate_impl() to shut down the ORB.

GUI InstallableModule

shutdown

[* for each module]
shutdown

shutdownThread

deactivate_impl

BOADiscoveryThread
Operator

shutdown

GUIToolBar

Either of these two
actions will initiate
shutdown.

[closes window]
WindowClosing

[clicks on Exit]
actionPerformed

Figure 5-10. GUI:ShutdownBasic (Sequence Diagram)

R1B1 GUI Detailed Design 5-11 2/22/00

5.11 GUI:StartupBasic (Sequence Diagram)
This diagram shows the sequence at startup. The GUI will find the names of the installable
module classes and will use the Java class loader to instantiate them. Then it will call each
module to register its system preferences and then it will read them in. Then the GUI will call
each module's startup, at which time the modules will have a chance to query the system
preferences that were read in. The GUI will create the GUIToolBar and add the general GUI
buttons to it. The installable modules will also add their buttons in their startup methods. Then,
the GUI will disable all of the buttons (except for Login and Exit) before showing the toolbar.
The GUI will then create an EventConsumerGroup to monitor the health of all event channels.
Then it will create a DiscoveryThread that will periodically look for event channels and objects.
See the GUI:DiscoveryBasic sequence diagram for details on event channel and object
discovery.

R1B1 GUI Detailed Design 5-12 2/22/00

create

addButton(Login)
addButton(Navigator)

[can't find
trader]

Display Error
Dialog With
Retry Button

See the sequence
diagram
GUI:DiscoveryBasic
for details on the
discovery thread's
discovery of event
channels and objects.

getSystemPreference(OpCtr name)

DiscoveryThreadcreate

start

Class

e.g., "GUIDMSModule"

EventConsumerGroup

GUI

InstallableModule
implementing class

CosTrading.Lookup
ClassLoader

startup
Find

Installable
Module
Names

[* for each module]
loadClass

create
[* for each module]

createInstance
create

[* for each module implementing
SystemPreferenceSupporter]
registerSystemPreferences

readSystemPreferences

query (OperationsCenter)

addWindowListener

GUIToolBar

Installable modules
will add their toolbar
buttons in their
startup methods.

System
Preference
Supporter

implementing class

addButton(Logout)
addButton(Exit)

addButton(AVCM)

addButton(Change User)

create

[* for each preference]
registerPreference

Operator

Now disable all buttons
except Login and Exit.

show

disableAllButtons()
enableButton(Login)

[* for each module]
startup

PreferenceHelper

Add the GUI as a WindowListener
so that we know when the toolbar
is closed so that we can shut down.Now start the

discovery process
for event channels
and objects.

[* for each system preference]
registerPreference

enableButton(Exit)
addWindowListener

Figure 5-11. GUI:StartupBasic (Sequence Diagram)

R1B1 GUI Detailed Design 5-13 2/22/00

5.12 GUI:EventUpdatePushedBasic (Sequence Diagram)
This diagram shows how updates to the served CORBA objects propagate to the GUI windows.
The server will push the event data to the event service. The CORBA event service will then
push the event data to the PushConsumer (which would typically be the GUI or an
InstallableModule). The event data must contain some identification data so that the GUI
wrapper object can be looked up in the DataModel. After the PushConsumer retrieves the GUI
wrapper object from the DataModel, it will update any relevant data within the object and will
call the DataModel one or more times with update hints to indicate what part of the object's data
changed. The DataModel will accumulate all of the update hints for some short time period until
it distributes them to all of the attached ModelObservers (which would typically be windows
displaying the object data).

update

objectUpdated

ModelObserver
implementing class

The update will happen sometime
later on the main event
dispatch thread.

GUICORBA
Event

Service

CosEvent.PushConsumer
implementing class DataModel

GUI
CORBA object

wrapper

The update
data must contain
some sort of identification
tag so that the object
can be looked up.

push (update data)
getDataModel

getObject

Update
Object

Wrapper

This represents
any view(s)
displaying the
object's data.
They must have
attached to the
DataModel to receive
the updates.

Figure 5-12. GUI:EventUpdatePushedBasic (Sequence Diagram)

R1B1 GUI Detailed Design 5-14 2/22/00

5.13 GUI:SystemCommandBasic (Sequence Diagram)
This diagram shows how a system command is handled. A system command is one which does
not apply to any served CORBA objects. (For those commands, see the
GUI:CommandObjectBasic diagram.) First, a context menu is invoked by the user when there
are no objects selected (see the GUI:MakeMenuNoneSelected for details on how the menu is
made). The GUI, or an InstallableModule, will be attached to the menu items as an
ActionListener when the menu is built. When the user clicks on the menu item, Java will invoke
the actionPerformed() method of the ActionListener implementing class, which will allow the
ActionListener to execute the command.

See the sequence diagram:

GUI:MakeMenuNoneSelected

GUI java.lang.ActionListener

Operator

[a menu item
was clicked on]
actionPerformed

[context menu
invoked with
no objects
selected]

makeMenu

This may be either
the GUI or an
InstallableModule

The listener
was attached
when the menu
was made.

Perform
Action

Figure 5-13. GUI:SystemCommandBasic (Sequence Diagram)

5.14 DataModel:AttachObserver (Sequence Diagram)

R1B1 GUI Detailed Design 5-15 2/22/00

This diagram shows how an observer is attached to the DataModel for the purpose of receiving
updates. The DataModel’s attachObserver method is called, and if the priority level is supported
by the DataModel, the observer will be attached at that priority level. The result of this is that
the observer will be updated periodically (with the period depending on the priority level) after
changes are made to the objects through the DataModel.

attach

Observer
Attacher

Success

[priority level not found]
InvalidPriorityLevel

DataModel UpdatePriorityLevel

See the diagram
DataModel:UpdateObservers
for a description of how
the observers are updated
on this thread once it is running.

attachObserver

getPriorityLevel

Figure 5-14. DataModel:AttachObserver (Sequence Diagram)

R1B1 GUI Detailed Design 5-16 2/22/00

5.15 DataModel:ObjectAdded_ (Sequence Diagram)
This diagram shows the steps taken when an object is added to the DataModel. First, the Object
and the Key are passed into the DataModel's objectAdded method. The DataModel checks
whether the object was added before and if so, the object will not be added again. The
DataModel then calls each of the PriorityLevel objects’ objectAdded methods so that observers
of all priority levels can be updated independently. The PriorityLevel object then checks its
ChangeCollection objects to see if a ChangeCollection exists for the class of object which is
being added. If not, it will create a ChangeCollection to store all changes for that class. The
PriorityLevel then creates an ObjectAdded object to represent the change, then adds it to the
ChangeCollection.

get

[object exists]
false

[* for each priority level]
objectAdded

ChangeCollection

hashCode

equals

ObjectAdded

hashCode

create

objectAdded

getClass

[no matching class found]
create

hashCode

[* for each change collection
until matching class is found (or not)]

getClass

put

Object
Creator

put

addChange

UpdatePriorityLevel java.util.Hashtable

create

Object to be
added

(e.g. Identifiable)

DataModel

Key Object
(e.g. Identifier)

create

Figure 5-15. DataModel:ObjectAdded_ (Sequence Diagram)

R1B1 GUI Detailed Design 5-17 2/22/00

5.16 DataModel:ObjectRemoved (Sequence Diagram)
This diagram shows what happens when an object is removed from the DataModel. The Key
object is passed into the DataModel’s objectRemoved method, which removes the stored object
in the DataModel. If the object was removed (i.e., if it was found), the DataModel then calls the
objectRemoved method for each UpdatePriorityLevel so that each priority level of observers will
be updated independently. The UpdatePriorityLevel will check to see if it has a
ChangeCollection to store changes for the class of the object. It will create a new
ChangeCollection if necessary. The UpdatePriorityLevel will then create an ObjectRemoved
object to represent the change. This object will be added to the ChangeCollection for the object's
class. Java's garbage collection ensures that the object will not actually be deleted until the last
reference to the object is removed; therefore, since object references are stored in the
ChangeCollection objects, each object will exist at least until the last observer is updated on the
lowest priority level. Observers have the responsibility to remove all of their references to the
objects when their update method is called; otherwise, memory leaks will occur.

java.util.HashtableChangeCollection

ObjectRemoved

Stored
Object

(e.g. Identifiable)

create

objectRemoved

remove

equals

[no matching class found]
create

hashCode

[object not found]
false

[* for each priority level]
objectRemoved

[* for each change collection
until matching class is found (or not)]

getClass

getClass

create

addChange

Key Object
(e.g. Identifier)

put
hashCode

UpdatePriorityLevelDataModelObject
Remover

Figure 5-16. DataModel:ObjectRemoved (Sequence Diagram)

R1B1 GUI Detailed Design 5-18 2/22/00

5.17 DataModel:ObjectUpdated (Sequence Diagram)
This diagram shows what happens when an object is updated through the DataModel. The caller
passes in the Key object and an optional UpdateHint object. If an object is found with the Key,
the DataModel will then call each UpdatePriorityLevel's objectUpdated method so that each
priority level will be updated independently. The UpdatePriorityLevel checks to see if a
ChangeCollection exists for the class of object that is being changed, and a ChangeCollection
will be created if necessary. If theree is a previous change for the object and the existing change
is ObjectRemoved or ObjectAdded, the update will be ignored. Otherwise, the update hint will
be combined with the existing update hints (if any) so that the resulting hints are a union of all
hints which have been accumulated. The changes will be distributed to the observers when the
next period expires for the UpdatePriorityLevel.

UpdateHintcreate

equals

getClass

[ObjectAdded change already exists]
return

[ObjectRemoved change
already exists]

return

DataModel

create

[object not found]
false

[no matching class found]
create

[matching class found]
getChange

Stored
Object

(e.g. Identifiable)

[change does not
already exist]

create

put
hashCode

[ObjectUpdated change
already exists]

numHints

[* for each priority level]
objectUpdated

get
hashCode

[* for each change collection
until matching class is found (or not)]

getClass

[ObjectUpdated created]
addChange

Object
Updater

Key Object
(e.g. Identifier)

UpdatePriorityLevel java.util.HashtableChangeCollectionObjectUpdated

[ObjectUpdated already
existed and new UpdateHint

is not null]
addHint

[ObjectUpdated change already exists
but contains no hints]

return

[ObjectUpdated already
existed but new UpdateHint

 is null]
removeAllHints

objectUpdated

Figure 5-17. DataModel:ObjectUpdated (Sequence Diagram)

R1B1 GUI Detailed Design 5-19 2/22/00

5.18 DataModel:UpdateObservers (Sequence Diagram)
This diagram shows how the observers are updated after changes have occurred to objects
through the DataModel. The UpdatePriorityLevel thread decides that it’s time to update the
observers because the period has run out. It adds all of the changes that have been accumulated
in the ChangeCollections and stores them in a ModelChange object. Then it distributes the
ModelChange to all observers. If the observer is not a GUIObserver, it is updated on the
UpdatePriorityLevel thread. However, GUIObservers must be updated on the main event thread,
so the SwingUtility’s invokeLater method is called to execute the update on the main event
thread. After all observers are updated, the ChangeCollections are deleted to flush them. The
UpdatePriorityLevel will then sleep until the next scheduled update.

ModelChange

ModelObserver

create

addChanges

[If not GUIModelObserver]
update

DataModel

java.lang.Thread

sleep

UpdatePriorityLevel

This will execute the
following loop until the
program shuts down.
The timing of the execution
of the loop depends on what
time period is associated with
the priority level.

GUIModelObserver

GUIUpdater

javax.Swing.
SwingUtilities

This will be executed
sometime later on the
main event dispatching
thread to eliminate
problems with updating
windows.

Double-nested
loop (for each
change collection,
for each observer)

run

[if GUI observer]
create

invokeLater

update

Remove
All

Change
Collections

run

Figure 5-18. DataModel:UpdateObservers (Sequence Diagram)

R1B1 GUI Detailed Design 5-20 2/22/00

5.19 Navigator:AddNavigables (Sequence Diagram)
This diagram shows what happens in the Navigator when Navigable objects are added. First, the
Navigables are passed to the NavTree. The NavTree will then build a list of any
NavTreeDisplayables to add. For each element in the list, it checks the hash table to determine
whether the parent (if any) is already in the tree. If the parent is in the tree or there is no parent,
a new MutableTreeNode will be created and inserted into the DefaultTreeModel, and the
NavTreeDisplayable will be put into the hash table. Each NavTreeDisplayable that is added to
the tree is removed from the list to be inserted. As long as one or more nodes were inserted
during a given pass through the list, another pass is attempted (for the next level of the tree).
Then the Navigables are added to the NavList. This will check each Navigable to see if it is a
NavListDisplayable and if its parent is the selected NavTreeDisplayable. If both are true, the
NavListDisplayable will be added to the list.

Navigator

addNavigables

addNavigables

[NavTreeDisplayable has parent]
get

[inserted MutableTreeNode]
put

[NavTreeDisplayable does not have parent
or parent already in tree]

create[list is not
empty and

at least one
node was inserted

on this pass]
repeat

[* for next
NavTreeDisplayable

in list]
repeat

[is child]
insert into list

turn off
redraw

[* for each property]
getPropertyValue

[* for next Navigable
implementing

NavListDisplayable]
repeat

[inserted MutableTreeNode]
remove NavTreeDisplayable from

list to be inserted

getParent

[created MutableTreeNode]
insertNodeInto

NavList NavListDisplayable

addNavigables

containsChildNavigable

getNavTreeDisplayable

NavTreeDisplayable javax.swing.tree.
DefaultTreeModel

java.util.
HashtableNavigable

Adder

[NavListDisplayables
added to list]

repaint window

javax.swing.tree.
MutableTreeNode

A hash table of
MutableTreeNodes
which have already
been inserted into
the tree.

NavTree

[* for each Navigable
implementing NavTreeDisplayable]

add to list to be inserted

turn redraw on

Figure 5-19. Navigator:AddNavigables (Sequence Diagram)

R1B1 GUI Detailed Design 5-21 2/22/00

5.20 Navigator:Initialize (Sequence Diagram)
This diagram shows how the Navigator is initialized. The openNavigator method will create a
new Navigator window and the tree and list views. The Navigator will then query the
NavigatorSupporter to provide it with all Navigable objects. The Navigables are added to the
NavTree (see the Navigator:AddNavigables diagram for details). Then the root node is set as the
selected node in the NavTree. See the Navigator:TreeSelectionChange sequence diagram for
details on the effects of this.

NavList

Navigator

Navigator

See the AddNavigables
sequence diagram for
more details.

create

addNavigables

setSelectedNavTreeDisplayable

getNavigables

Navigator
Opener

create

See TreeSelectionChange
sequence diagram
for more details.

Navigator
Supporter

NavTree

openNavigator

Figure 5-20. Navigator:Initialize (Sequence Diagram)

R1B1 GUI Detailed Design 5-22 2/22/00

5.21 Navigator:RemoveNavigables (Sequence Diagram)
This diagram shows how Navigables are removed from the Navigator. Each
NavTreeDisplayable to removed causes removeTreeNode to be called. This is a recursive call,
which calls removeTreeNode first on each of its children. The children are removed first so that
every tree node below the current node is cleaned out of the hash table. If the NavList is
displaying the children of the node that is being destroyed, then we set the NavTreeDisplayable
in the list to the parent. Then the NavTreeDisplayable is removed from the hash table and also
from its parent. The Navigables to be removed are then passed to the NavList, which removes
and NavListDisplayables in the list matching any of the Navigables to be removed.

For each Navigable
being removed

NavTree

getNavTreeDisplayable

[found]
remove

removeNavigables

java.util.
Hashtable

removeNavigables

[* for each Navigable
implementing

NavTreeDisplayable]
removeTreeNode

[* for each child
implementing NavTreeDisplayable]

removeTreeNoderemoveTreeNode
does this...

This is a recursive call.
The child nodes are
removed first to allow them
to be removed from the
hash table.

[current tree node in NavList == node to be removed]
setNavTreeDisplayable(parent)

removeNavigables

javax.swing.tree.
DefaultTreeModel NavList

remove

[node found]
removeNodeFromParent

getNavTreeDisplayable
getNavList

[current node in NavList ==
node to be removed]

getParent

Navigable
Remover

Navigator NavTreeDisplayable

turn off redraw

find

getChildNavigables

Figure 5-21. Navigator:RemoveNavigables (Sequence Diagram)

R1B1 GUI Detailed Design 5-23 2/22/00

5.22 Navigator:TreeSelectionChange (Sequence Diagram)
This diagram shows what happens when a tree selection change takes place. The NavTree calls
the NavList and sets the NavTreeDisplayable. This will cause all objects to be removed from the
NavList. The NavList will ask the new NavTreeDisplayable for its properties (columns). Then
the NavList will ask the NavTreeDisplayable for its children, which will all be inserted into the
list. Each item inserted will be called for each column/property to supply the property value.

[* for each NavListDisplayable]
[* for each property]

getPropertyValue

NavListDisplayable

getPropertyList

[* for each property]
insert column

Java
Swing

or other
Selection
Changer

NavTree Navigator NavList NavTreeDisplayable

selection change
notification

or
setSelectedNavTreeDisplayable getNavList

setNavTreeDisplayable

getChildNavigables

[* for each
NavListDisplayable]

insert into list

remove all
NavListDisplayables

turn off
redraw

turn on redraw

repaint window

Figure 5-22. Navigator:TreeSelectionChange (Sequence Diagram)

R1B1 GUI Detailed Design 5-24 2/22/00

5.23 GUIDMSModule:AddDMS (Sequence Diagram)
This sequence shows how an operator adds a new DMS to the system. The operator initiates this
action by selecting Add DMS from the appropriate popup menu. If the user does not have the
appropriate functional rights, this menu item will not be made available. The operator will then
be shown a DMS properties dialog box with default configuration information which he/she may
modify to alter the configuration of the DMS. When the user presses OK, the new DMS will be
added to the system. If the DMS can’t be added, the user will be shown a popup window
describing the reason it could not be added. If the DMS is added successfully, a DMSAdded
event will be pushed from the server through the DMS event channel and the new GUIDMS
object will be added to the DataModel, which will update all windows after a short delay.

If successful, this
will cause a DMSAdded
event to be pushed through
the event channel. The actual
GUIDMS will be created
and added to the DataModel after
this event is received.

create

The user will see a
message box detailing the
reason the DMS could not
be added.

The temporary GUIDMS
object will be deleted because no
objects hold references to it.

delete

[CHART2Exception]
showMessageDialog[CHART2Exception]

GUI
CosTrading.

Lookup

get

getTrader

query

Find a DMS
 factory

javax.swing.
JOptionPane

The user will see a message
box stating that there is not
currently a DMS Factory
available.

DMSFactory

GUIDMS

DMSPropertiesDialog

At this point the user
will be shown the DMS
Properties dialog. This
dialog is modeless and will
apply the changes to the
DMS when the user presses
the OK button.

Operator

GUIDMSModule

addDMS

[No Factory Found]

[Access Denied]
showMessageDialog

show

actionPerformed

[Cancel]

setConfiguration

getToken

createDMS

[AccessDenied]

[No Factory Found]
showMessageDialog

create

doProperties

Figure 5-23. GUIDMSModule:AddDMS (Sequence Diagram)

R1B1 GUI Detailed Design 5-25 2/22/00

5.24 GUIDMSModule:AddMessageToLibrary (Sequence Diagram)
This sequence shows how an operator adds a new stored message to a particular library. The
operator initiates this action by right clicking on a library object and selecting “Add Message”
from the popup menu. If the user does not have the appropriate functional rights, this menu item
will not be made available. The operator will then be shown the DMSMessageEditor dialog box
with default configuration information that he/she may modify to alter the name, category and
message content of the stored message. When the user presses OK, the new message will be
added to the library. If the message can’t be added, the user will be shown a popup window
describing the reason it could not be added. If the message is added successfully, an event will
be pushed from the server through the the event service and the new GUIDMSStoredMessage
object will be added to the DataModel, which will update all windows after a short delay.

GUIDMSModule

get

DMSMessageEditorcreate

Operator

GUIDMSMessageLibrary

createNewMessage

DMSMessageLibrary

addMessage

delete

GUIDMSStoredMessage

JOptionPane

getFonts

getGeometries

create

show

doProperties

actionPerformed

[Cancel]

setMessageData

addMessage

AccessDenied, DisapprovedMessageContent, or CHART2Exception

[AccessDenied, DisapprovedMessageContent, or CHART2Exception]
showMessageDialog

The user will see
a message box detailing
the reason the message
could not be added to the
library.

The user will see a
DMS message editor
at this point.

Figure 5-24. GUIDMSModule:AddMessageToLibrary (Sequence Diagram)

R1B1 GUI Detailed Design 5-26 2/22/00

5.25 GUIDMSModule:CreateMessageLibrary (Sequence Diagram)
This sequence shows how an operator may create a new message library. The operator initiates
this sequence by right clicking on the “DMS Message Libraries” object in the Navigator window
and selecting the “Add Message Library” menu item. This item will not be available if the user
does not have the correct functional rights. The user will be shown a
DMSMessageLibraryProperties dialog that will allow him/her to name the library. The system
will then attempt to create the new libary with the specified name. If the library is created
successfully, it will be available for use. If an error is encountered, the user will be notified via a
popup window that describes the error condition.

This will cause a
LibraryAdded event
to be pushed through
the event channel.
When this happens,
the event will be caught
and a permanent
GUIDMSMessageLibrary
object will be created
and added to the
DataModel.

GUI
CosTrading.

Lookup
javax.swing.
JOptionPane DMSLibraryFactory

The user will see
a message dialog
stating that no
factories are
available.

The user will see
a message dialog
explaining the cause
of the failure.

Operator

GUIDMSModule

GUIDMSMessageLibrary

DMSMessageLibraryProperties This dialog will allow
the operator to name the
library.

addMessageLibrary

create

getTrader
query

(DMSLibraryFactory)

[No Factory Available]
showMessageDialog

[No Factory Available]
getToken

createMessageLibrary

createLibrary
[AccessDenied or CHART2Exception]

showMessageDialog[AccessDenied or CHART2Exception]
delete

The temporary GUIDMSMessageLibrary
object will be deleted because no
objects hold references to it.

actionPerformed

[Cancel]

get

create
doProperties

Figure 5-25. GUIDMSModule:CreateMessageLibrary (Sequence Diagram)

R1B1 GUI Detailed Design 5-27 2/22/00

5.26 GUIDMSModule:DeleteMessageLibrary (Sequence Diagram)
This sequence shows how an operator may remove a DMS Message Library from the system.
The operator initiates this action by right clicking on the message library in a window and
selecting the “Remove” menu item from the popup menu. If any messages in this library are
currently being used in a plan, the user will be warned and asked if he/she would like to
continue. If the user continues the library will be removed from the system. If any errors are
encountered the user will be notified via a popup window describing the error. This action will
delete all messages in the library as well as the library itself from the system.

User is warned that some plans
are using messages from this
library. The user is givin the option
of cancelling the action or continuing.

Operator

GUIDMSMessageLibrary

remove

GUI DMSMessageLibrary javax.swing.JOptionPane

get

getToken

getPlansUsingLibrary
[Plans are using this library]

showOptionDialog
[Cancel]

remove
[AccessDenied or CHART2Exception]

showMessageDialog

Figure 5-26. GUIDMSModule:DeleteMessageLibrary (Sequence Diagram)

R1B1 GUI Detailed Design 5-28 2/22/00

5.27 GUIDMSModule:DeleteStoredMessage (Sequence Diagram)
This sequence shows how an operator may delete a stored DMS message from the system. The
operator initiates this sequence by right clicking on a particular DMS message in a window and
selecting the “Remove” menu item from the popup. The system will check if the message is
currently being used by any plans. If it is, the user will be warned and will be given the option to
cancel or continue. If the user continues, the message will be removed from the system. If any
errors occur the user will be notified via a popup window which displays the details of the error.

GUI DMSStoredMessage javax.swing.JOptionPane

User is warned that some plans
are using this message. The user
 is givin the option of cancelling the
action or continuing.

Operator

GUIDMSStoredMessage

remove

get

getToken

getPlansUsingMessage

[Plans are using this message]
showOptionDialog

[Cancel]

remove
[AccessDenied or CHART2Exception]

showMessageDialog

GUIDMSMessageLibrary

getPlansUsingMessage

Figure 5-27. GUIDMSModule:DeleteStoredMessage (Sequence Diagram)

5.28 GUIDMSModule:Login (Sequence Diagram)
This sequence of events in initiated when a user logs in to the system using either the login or
change user commands from the toolbar window. These commands cause the GUI:LoginBasic
sequence or GUI:ChangeUserBasic to be performed. As part of either of these sequences, the
GUI will call each of the installed modules giving them a chance to perform necessary
operations to set up data specific to a particular user. The GUIDMSModule does not currently
need to perform any processing when a user logs in.

R1B1 GUI Detailed Design 5-29 2/22/00

See GUI:LoginBasic and
GUI:ChangeUserBasic
sequence to see details
on login operation processing.

login or changeUser

GUIDMSModule

loggedIn

User

GUI

Figure 5-28. GUIDMSModule:Login (Sequence Diagram)

5.29 GUIDMSModule:Logout (Sequence Diagram)

R1B1 GUI Detailed Design 5-30 2/22/00

This sequence of events in initiated when a user logs out of the system using either the logout or
change user commands from the toolbar window. These commands cause the GUI:LogoutBasic
or GUI ChangeUserBasic sequences to be performed. As part of these sequences, the GUI will
call each of the installed modules giving them a chance to perform necessary operations to clean
up data for a particular user. The GUIDMSModule does not currently need to perform any
processing when a user logs out.

See GUI:LogoutBasic and
GUI:ChangeUserBasic
sequence to see details
on logout operation processing.

GUIDMSModule

User

GUI

loggedOut

logout or changeUser

Figure 5-29. GUIDMSModule:Logout (Sequence Diagram)

R1B1 GUI Detailed Design 5-31 2/22/00

5.30 GUIDMSModule:EditLibraryMessage (Sequence Diagram)
This sequence shows how an operator changes the name or message content of a stored DMS
message. The operator initiates this action by right clicking on the stored message and selecting
“Properties” from the popup menu. If the user does not have the appropriate functional rights,
this menu item will not be made available. The operator will then be shown the
DMSMessageEditor dialog box with the current message contents and names which he/she may
modify. When the user presses OK, the message contents and name will be changed. If the
message content or description could not be modified, the user will be shown a popup window
describing the reason for the error. If the values are modified successfully, an event will be
pushed from the server through the event service and the all windows will show the new
information after a short delay.

Operator

GUIDMSStoredMessage

DMSMessageEditor

GUIDMSModule

setMessageData
[content modified]

setMessageContent

[description modified]
setMessageDescription

AccessDenied, DisapprovedMessageContent, or CHART2Exception
[AccessDenied, DisapprovedMessageContent, or CHART2Exception]

showMessageDialog

delete

This dialog will allow
the user to edit the name
and message content of the
stored message.

The user will
see a message box
detailing the error
condition.

actionPerformed

[Cancel]

DMSStoredMessage JOptionPane

doProperties

create

show

get

getFonts

getGeometries

Figure 5-30. GUIDMSModule:EditLibraryMessage (Sequence Diagram)

R1B1 GUI Detailed Design 5-32 2/22/00

5.31 GUIDMSModule:SetMessageLibraryProperties (Sequence
Diagram)

This sequence shows how an operator may alter the properties of a DMSMessageLibrary that,
for this release, will involve changing the name of the library. The user initiates this sequence by
right clicking on a DMS message library object in a window and selecting the “Properties” menu
item. The user will then be shown a DMSMessageLibraryProperties dialog that will be
populated with the current name of the library. The operator may then type a new name for the
library. When the user is done the library will be renamed. If any errors are encountered, the
user will be notified via a popup window detailing the reason for the failure.

GUI javax.swing.JOptionPane DMSMessageLibrary

The user will see
a message dialog
explaining the cause
of the failure.

Operator

GUIDMSMessageLibrary

DMSMessageLibraryProperties

This dialog will allow
the operator to name the
library.

actionPerformed

[Cancel]

get

getToken

setName

[AccessDenied or CHART2Exception]

delete

create

setName
[AccessDenied or CHART2Exception]

showMessageDialog

doProperties

Figure 5-31. GUIDMSModule:SetMessageLibraryProperties (Sequence Diagram)

R1B1 GUI Detailed Design 5-33 2/22/00

5.32 GUIDMSModule:BlankDMS (Sequence Diagram)
This sequence diagram shows how an operator blanks a particular DMS controller. The
sequence is initiated when an operator right clicks on a DMS in the navigator and selects the
Blank menu item. If the user does not have the appropriate functional rights, the DMS will not
put the item in the menu when the menu is displayed. The access denied exception should never
be encountered. It is handled here as a failsafe. Upon completion of this sequence the user will
have a Command Status in the Command status view which will display the state of the
operation as the server processes it. When the command completes and the DMS has been
blanked, the navigator and other views will be updated with the new (blank) message
information for the DMS.

[CHART2Exception]

javax.swing.
JOptionPane

User will see a
message box informing
him/her that they do not have
the correct functional rights
to perform this operation.
The command status will also
move to the failed commands
view.

The user will see a
message box informing him/her
of the reason that was sent back
from the DMS in the exception.
The command status will also
move to the failed commands
view.

The user will see a message box
informing him/her of the reason
for the conflict. The command
status will also move to the failed
commands view.

GUI CommandStatusHandler
Operator

GUIDMS DMS

blankSign

blankSign
[AccessDenied]

showMessageDialog

getCommandStatusHandler

createCommandStatus

[CHART2Exception]
showMessageDialog

getToken

[AccessDenied]

[ResourceControlConflict]
showMessageDialog

get

Figure 5-32. GUIDMSModule:BlankDMS (Sequence Diagram)

R1B1 GUI Detailed Design 5-34 2/22/00

5.33 GUIDMSModule:CreateNewPlanItem (Sequence Diagram)
This sequence shows how an operator may add a new plan item to an already existing Plan. The
operator initiates this sequence by right clicking on the Plan object in a window and selecting
“Create DMS Stored Message Item” from the resulting popup. The operator will then be
presented with the DMSStoredMsgItemProperties dialog that will allow him/her to associate a
DMS with a library message. When the user is finished he/she will either see a popup window
detailing an error condition which prevented the item from being added to the plan, or the item
will be show as a part of the plan in the GUI windows.

[AccessDenied or CHART2Exception]

addItem

Operator

GUIPlan

[Create Plan Item]
actionPerformed

GUIDMSModule

GUIDMSStoredMsgItem

This dialog will allow
the user to select
a DMS and a Stored Message
to display on it when the item
is activated.

DataModel

createNewGUIPlanItem

JOptionPane

[AccessDenied or CHART2Exception]
showMessageDialog

[AccessDenied or CHART2Exception]
showMessageDialog

DMSStoredMsgItemPropertiescreate

show

PlanDMS

actionPerformed

create

getObjectsOfType
(GUIDMS)

getObjectsOfType
(GUIDMSStoredMessage)

[Cancel]

setMsgItemData

doProperties

createPlanItem

Figure 5-33. GUIDMSModule:CreateNewPlanItem (Sequence Diagram)

R1B1 GUI Detailed Design 5-35 2/22/00

5.34 GUIDMSModule:DeleteDMS (Sequence Diagram)
This sequence diagram shows how an operator removes a DMS from the CHART II system.
The sequence is initiated when an operator right clicks on a DMS in the Navigator and selects
the delete menu item. If the user does not have the appropriate functional rights, the DMS will
not put the item in the menu when the menu is displayed. The access denied exception should
never be encountered. It is handled here as a failsafe. When this sequence completes the DMS
will be removed from all views in the CHART II application and will no longer be available for
use.

If successful, this
will cause a DMSDeleted
event to be pushed through
the event service. When
caught, the GUIDMS will
be removed from the DataModel.

[AccessDenied]

[CHART2Exception]

remove

remove

[AccessDenied]
showMessageDialog

get

getToken

[CHART2Exception]
showMessageDialog

GUI
Operator

GUIDMS DMS
javax.swing.
JOptionPane

User will see a
message box informing
them that they do not have
the correct functional rights
to perform this operation.
A Command status will also
be displayed in the failed
commands view.

The user will see a
message box displaying
the reason that was sent back
from the DMS in the exception.
A command status will also
be displayed in the failed commands
view.

Figure 5-34. GUIDMSModule:DeleteDMS (Sequence Diagram)

R1B1 GUI Detailed Design 5-36 2/22/00

5.35 GUIDMSModule:Shutdown (Sequence Diagram)
This sequence of events is initiated by a user closing the toolbar window of the CHART II GUI
application.

Exit Toolbar
Window

shutdown

User

ORBGUIDMSModule

disconnect

GUI

shutdown

delete

Figure 5-35. GUIDMSModule:Shutdown (Sequence Diagram)

R1B1 GUI Detailed Design 5-37 2/22/00

5.36 GUIDMSModule:Startup (Sequence Diagram)
This diagram shows the actions of the DMS module when the GUI starts up. Because the DMS
module will be the consumer of DMS related events from the event service, it must be connected
to the ORB during startup. The Navigator groups for message libraries and DMSs are also
created and added to the DataModel.

DMSNavGroup

DMSLibraryNavGroup

DataModel

create

create

objectAdded

objectAdded

addPlanItemSupporter

ORB

connect

getDataModel

get

GUI
GUIDMSModule

startup

The module will stay for
the life of the application and
will be cleaned up at shutdown.

GUIPlanModule

Figure 5-36. GUIDMSModule:Startup (Sequence Diagram)

R1B1 GUI Detailed Design 5-38 2/22/00

5.37 GUIDMSModule:Discovery (Sequence Diagram)
This sequence shows how the GUIDMSModule will perform discovery of system objects and
make objects that are discovered available to the operator. The operator does not need to take
any action to initiate this sequence. The GUI Discovery thread will periodically call methods on
each installed module that will cause that module to discover event channels and objects. The
GUIDMSModule will discover DMS Event Channels, DMS objects, and DMS message library
objects. Each time it discovers one of these objects it will check the DataModel to see if the
object has previously been discovered. If it has, no action needs to be taken. If it has not, the
object must be added to the DataModel. The object will then show up in all appropriate
windows.

[not found]
create

[not found]
objectAdded

for each library

for each stored message

CosTrading.Lookup EventConsumerGroup

PushEventConsumer

DataModelDMS

GUIDMS

query
(DMS Event Channels)

[for each channel found]
add

[for each event channel]
create

discoverObjects
query

(DMS Factory and DMS Message Library objects)

getID

getObject
[not found]

create
objectAdded

DMSFactory DMSMessageLibary DMSStoredMessage

[for each DMS]

[DMSMessageLibrary]
getID

getObject
[not found]

objectAdded
getStoredMessages

getID

getObject

GUI Discovery Thread
GUIDMSModule

discoverEventChannels

[for each object found]

[DMS Factory]
getResources

GUIDMSStoredMessage

Figure 5-37. GUIDMSModule:Discovery (Sequence Diagram)

R1B1 GUI Detailed Design 5-39 2/22/00

5.38 GUIDMSModule:ForcePoll (Sequence Diagram)
This sequence diagram shows how an operator forces the poll of a DMS to get an update of the
signs current status information. The sequence is initiated when an operator right clicks on a
DMS in the navigator and selects the Update Status menu item. If the user does not have the
appropriate functional rights, the DMS will not put this item in the menu when the menu is
displayed. The access denied exception should never be encountered. It is handled here as a
failsafe. The user will see the Command Status in the Command Status view while it is being
handled by the DMS service. Once the DMS has been polled, the user will see the new status of
the DMS in the navigator.

getToken

CommandStatusHandler
Operator

GUIDMS DMS javax.swing.JOptionPane

User will see a
message box informing
him/her that they do not have
the correct functional rights
to perform this operation.
The command status will also
move to the failed commands
view.

The user will see a
message box informing him/her
of the reason that was sent back
from the DMS in the exception.
The command status will also move
to the failed commands view.

At this point the user
will see the Command Status
in the Command Status View

GUI

[AccessDenied]
showMessageDialog

get

getCommandStatusHandler

pollNow

pollNow

createCommandStatus

[CHART2Exception]
showMessageDialog

Figure 5-38. GUIDMSModule:ForcePoll (Sequence Diagram)

R1B1 GUI Detailed Design 5-40 2/22/00

5.39 GUIDMSModule:ModifyDMSSettings (Sequence Diagram)
This sequence shows how an operator may alter the configuration of a DMS. The operator
initiates this action by right clicking on the DMS in a window and selecting the “Properties”
menu item. If the user does not have the appropriate functional rights, this menu item will not be
made available. The operator will then be shown a DMS properties dialog box with the current
configuration information for the selected DMS which he/she may modify to alter the
configuration as appropriate. When the user presses OK, the DMS will be reconfigured. If the
DMS configuration information is erroneous, the user will be shown a popup window describing
the reason it could not be altered. If the operation is successful, the DMS will begin using the
new configuration information.

The window is
deleted automatically
when it closes.

DMS GUI

setConfiguration

[Cancel]

delete

setConfiguration

get

[AccessDenied]

getCommandStatusHandler

CommandStatusHandler javax.swing.JOptionPane

User will see a
message box
with the reason for
the exception and
the CommandStatus
will move to the
Failed Commands
View.

Operator
GUIDMS

DMSPropertiesDialog

At this point the user
will be shown the
DMS Properties dialog.
This dialog is modeless
and will apply the changes
to the DMS when the user
presses the OK button.

doProperties
getConfiguration

createCommandStatus

getToken

[AccessDenied]
showMessageDialog

create

show

actionPerformed

[CHART2Exception]
showMessageDialog

Figure 5-39. GUIDMSModule:ModifyDMSSettings (Sequence Diagram)

R1B1 GUI Detailed Design 5-41 2/22/00

5.40 GUIDMSModule:PutOnline (Sequence Diagram)
This sequence diagram shows how an operator puts a DMS online. The sequence is initiated
when an operator right clicks on a DMS in the navigator and selects the Put Online menu item.
The DMS will not put the item in the menu when the menu is displayed unless the user has the
appropriate functional rights, so the “access denied” should never be encountered. It is handled
here as a failsafe.

[AccessDenied]

getToken

CommandStatusHandler
Operator

GUIDMS DMS javax.swing.JOptionPane

User will see a
message box informing
him/her that they do not have
the correct functional rights
to perform this operation.
The command status will also
move to the failed commands
view.

The user will see a
message box informing him/her
of the reason that was sent back
from the DMS in the exception.
The command status will also
move to the failed commands
view.

putOnline

putOnline

[AccessDenied]
showMessageDialog

get

getCommandStatusHandler

GUI

createCommandStatus

[CHART2Exception]
showMessageDialog

Figure 5-40. GUIDMSModule:PutOnline (Sequence Diagram)

R1B1 GUI Detailed Design 5-42 2/22/00

5.41 GUIDMSModule:Reset (Sequence Diagram)
This sequence diagram shows how an operator resets a particular DMS controller. The sequence
is initiated when an operator right clicks on a DMS in the navigator and selects the Reset menu
item. If the user does not have the appropriate functional rights, the DMS will not put the item in
the menu when the menu is displayed. The access denied exception should never be
encountered. It is handled here as a failsafe. Upon completion of this sequence the user will
have a Command Status in the Command status view which will display the state of the
operation as the server processes it. When the command completes and the controller has been
reset, the navigator and other views will be updated with the new status information for the
DMS.

[CHART2Exception]

getToken

GUI CommandStatusHandler
Operator

GUIDMS DMS javax.swing.JOptionPane

User will see a
message box informing
him/her that they do not have
the correct functional rights
to perform this operation.
The command status will also
move to the failed commands
view.

The user will see a
message box informing him/her
of the reason that was sent back
from the DMS in the exception.
The command status will also
move to the failed commands
view.

resetController

resetController

[AccessDenied]
showMessageDialog

[ResourceControlConflict]
showMessageDialog

[AccessDenied]

get

getCommandStatusHandler

The user will see a message box
informing him/her of the reason
for the conflict. The command
status will also move to the failed
commands view.

createCommandStatus

[CHART2Exception]
showMessageDialog

Figure 5-41. GUIDMSModule:Reset (Sequence Diagram)

R1B1 GUI Detailed Design 5-43 2/22/00

5.42 GUIDMSModule:SetMessage (Sequence Diagram)
This sequence shows how an operator may change the current message being displayed on a
particular DMS. The operator initiates this operation by right clicking on the appropriate DMS
in a window and selecting the “Edit Message” item from the resulting popup menu. This item
will not be available if the user does not have the appropriate functional rights. The user will
then be shown a DMSMessageEditor dialog populated with the current message from that DMS.
The user may use this dialog to type in a new message and preview what that message will look
like formatted for the selected DMS. When the user is done, the new message will be sent to the
DMS. If the message cannot be changed, the user will be notified via a popup message box
and/or the failed commands view. If the message is altered, the new message will show up in all
GUI windows displaying the message for that particular DMS.

GUIMultiFormatter

plainTextToMulti

[banned words found]
Notify user of
banned words

showMessage

actionPerformed

plainTextToMulti

[cancel]
delete

delete

Command
Status
Handler

getToken

getCommandStatusHandler

javax.swing.
JOptionPane

[AccessDenied,
MULTIParseFailure,

ResourceControlConflict,
CHART2Exception]

[AccessDenied, MULTIParseFailure, ResourceControlConflict, CHART2Exception]
showMessageDialog

[DisapprovedMessageContent]
refreshBannedWordListCache

[DisapprovedMessageContent]
showMessageDialog

Each time the user
changes the text on
the message editor.

When the user
presses OK or
Cancel on the
message editor.

DMS

setMessage

[cancel]

[OK]
plainTextToMulti

setMessage

Operator

GUIDMS

DMSMessageEditor

MultiConverter

DMSMessageView

parseMulti
At this point the user
has a message editor
and can alter the
message in the entry
field.

GUIDMSModule GUIDictionary

setMessage

create

createCommandStatus

showMessage

keyPressed

show

multiToPlainText

create

get
getDictionary

checkForBannedWords

Initialize entry field

Figure 5-42. GUIDMSModule:SetMessage (Sequence Diagram)

R1B1 GUI Detailed Design 5-44 2/22/00

5.43 GUIDMSModule:ShowTrueDisplay (Sequence Diagram)
This sequence shows how an operator may view the current message displayed on a particular
DMS. The view will be formatted to show the message as it looks on the sign. The operator
initiates this sequence by right clicking on the desired DMS in a window and selecting the
“Show Display” menu item.

getMessage

showMessage

update

get

getDataModel
attachObserver

Check if update
is for this DMS

[not for this DMS]

MultiConverter

showMessage

show

create

create

Operator
GUIDMS

DMSTrueDisplay

DMSMessageView

DataModel

This occurs when
the message changes on
the DMS in the field and
the event has been caught
by this GUI. The data model
updates all attached observers.

GUI
showTrueDisplay

parseMulti

parseMulti

Figure 5-43. GUIDMSModule:ShowTrueDisplay (Sequence Diagram)

R1B1 GUI Detailed Design 5-45 2/22/00

5.44 GUIDMSModule:TakeOffline (Sequence Diagram)
This sequence diagram shows how an operator takes a DMS offline. The sequence is initiated
when an operator right clicks on a DMS in the navigator and selects the Take Offline menu item.
If the user does not have the appropriate functional rights, the DMS will not put the take offline
item in the menu when the menu is displayed. The access denied exception should never be
encountered. It is handled here as a failsafe.

getToken

[AccessDenied]

DMS

takeOffline

[AccessDenied]
showMessageDialog

[CHART2Exception]
showMessageDialog

The user will see a
message box informing him/her
of the reason that was sent back
from the DMS in the exception.
The command status will also
move to the failed commands
view.

javax.swing.JOptionPane

User will see a
message box informing
him/her that they do not have
the correct functional rights
to perform this operation.
The command status will also
move to the failed commands
view.

Operator
GUIDMS

takeOffline

GUI

get

CommandStatusHandler

getCommandStatusHandler

createCommandStatus

Figure 5-44. GUIDMSModule:TakeOffline (Sequence Diagram)

R1B1 GUI Detailed Design 5-46 2/22/00

5.45 GUIDictionaryModule:DictionaryProperties (Sequence Diagram)
This diagram shows how the editing of the words in a given dictionary will be done. It begins
with a user clicking on a menu item from the GUIDictionary’s context menu. Since the
GUIDictionary will be an ActionListener for the menu item, the GUIDictionary will be called
and then creates the BannedWordsDialog. This dialog attaches itself as an observer to the
DataModel in order to catch any updates to the word list (which will come through the event
channel and then through the DataModel). It gets the list of banned words and displays them to
the user. When the user provides a list of banned words to add or remove, the GUIDictionary
will make a call to the served Dictionary object. If the words are added successfully, the
Dictionary object will push an event through the Dictionary event channel. (See the
EventHandling diagram for details.) The DataModel will then call the dialog’s update() method,
and the dialog will ask the GUIDictionary wrapper for the current list of words to display. Just
before the dialog is closed, it will detach from the DataModel.

getTokenaddBannedWordList
or RemoveBannedWordList

display dialog

[user chooses to add or remove words]
addBannedWords or
removeBannedWords

addBannedWordList or
removeBannedWordList

DataModel

getDataModel

[success]
update

refresh
displayed

words

getBannedWordList

[user closes dialog]
getDataModel

detachObserver

[failure]
display error

attachObserver

User Dictionary
Properties

Dialog

GUIDictionary GUI

[view rights only]
disable all editing

features

Dictionary

If successful, the
added or removed
banned words will
be pushed back through
the Dictionary event
channel and then through
the DataModel. See the
EventHandling
diagram for details.

[invokes dialog
from Dictionary

menu]
actionPerformed

create

getBannedWordList

show

Figure 5-45. GUIDictionaryModule:DictionaryProperties (Sequence Diagram)

R1B1 GUI Detailed Design 5-47 2/22/00

5.46 GUIDictionaryModule:Discovery (Sequence Diagram)
This diagram shows how the Dictionary event channels and Dictionary objects are discovered
and added to the system. This will be a periodic process, and the GUI will call the
GUIDictionaryModule repeatedly. When the GUI asks the module to discover event channels, it
looks up the Dictionary event channels in the trader. It then creates a PushEventConsumer and
adds it to the EventConsumerGroup, which actually attaches the consumer to the channel and
reattaches it if the event service is restarted. (Duplicate channels will be ignored). The GUI then
calls the module to discover objects. At this time the module will query the Dictionary objects in
the trader. If any are found, it will create an Identifier to be used as a lookup key for use with the
DataModel. If the GUIDictionary wrapper object does not already exist in the DataModel, it is
created and added. Creating the wrapper will cause the new wrapper to initialize its data by
making a remote call to the served Dictionary object. The GUIDictionary is then added to the
GUIDictionaryNavGroup and the DataModel is called to propagate the changes to any interested
observers such as the BannedWordsDialog.

GUIDictionary
NavGroup

objectAdded(GUIDictionary)

[* for next
discovered
dictionary]

repeat

addDictionary

objectUpdated(GUIDictionaryNavGroup)

GUI
GUIDictionaryModule

CosTrading.
Lookup

PushEventConsumer

DataModel
Dictionary

Identifier

discoverEventChannels

query (Dictionary
event channels)

[* for each event channel]
create

[* for each event channel]
add

discoverObjects

query (dictionaries)

[dictionary not found]
create

getDataModel

getObject

getID

create

getBannedWords
getToken

setDictionaryClass

getClass

Event
Consumer

Group

GUIDictionary

Figure 5-46. GUIDictionaryModule:Discovery (Sequence Diagram)

R1B1 GUI Detailed Design 5-48 2/22/00

5.47 GUIDictionaryModule:EventHandling (Sequence Diagram)
This diagram shows how dictionary events are propagated through the GUI when they are
pushed from the event channel. The ORB invokes the push method of the
DictionaryEventConsumer. The event data contains a byte array identifier, which is used to
create an Identifier object to get the GUIDictionary object from the DataModel. The words are
added or removed from the wrapper's cache, and then the DataModel is called to update any
observers that may be listening for updates, such as the BannedWordsDialog.

Identifier

GUI DataModelGUIDictionary

push

create

getDataModel

getObject

[BannedWordsAdded or
BannedWordsRemoved event]

bannedWordsAdded or
bannedWordsRemoved

objectUpdated
create

Corba
Event

Service

GUIDictionaryModule

add or remove
words from

list

getDataModel

[Dictionary
 not found]

Figure 5-47. GUIDictionaryModule:EventHandling (Sequence Diagram)

R1B1 GUI Detailed Design 5-49 2/22/00

5.48 GUIDictionaryModule:Shutdown (Sequence Diagram)
This diagram shows what happens at shutdown. The module disconnects from the ORB to clean
up.

ORB

shutdown
disconnect

GUI
GUIDictionaryModule

Figure 5-48. GUIDictionaryModule:Shutdown (Sequence Diagram)

R1B1 GUI Detailed Design 5-50 2/22/00

5.49 GUIDictionaryModule:Startup (Sequence Diagram)
This diagram shows the steps taken to initialize the GUIDictionaryModule. The GUI will call
the module's startup method. The module will create a GUIDictionaryNavGroup and add it to
the DataModel so that the Navigator will display it. The module will store the group for later
use. The GUIDictionaryModule will attach itself to the ORB so that it can serve as a
PushConsumer to receive dictionary events.

GUIDictionaryNavGroup

DataModel

startup

create

getDataModel

objectAdded

GUI
GUIDictionaryModule

store
nav group

connect

Connects to the ORB
to become a Push Consumer.
Will be disconnected at shutdown.

ORB

Figure 5-49. GUIDictionaryModule:Startup (Sequence Diagram)

R1B1 GUI Detailed Design 5-51 2/22/00

5.50 GUIPlanModule:ActivatePlan (Sequence Diagram)
This diagram shows how a plan is activated. The user clicks on the GUIPlan and invokes the
context menu. If the user has rights, the Activate Plan menu item will be displayed. When it is
clicked on, th GUIPlan calls the CommandStatusHandler to create a CommandStatus and put it
in the DataModel so that the Command Status View (or Command Failure View) will be notified
of the command's progress. The GUIPlan then calls the Plan to activate it. The activation
happens asynchronously, and the CommandStatus object is updated as the command progresses.

[AccessDenied or
CHART2Exception]
showMessageDialog

[clicked on
Activate Plan
menu item]

actionPerformed
getCommandStatusHandler

If successful, the
activate method
will cause the server
to asynchronously
activate the plan.
The CommandStatus
object will be updated
as the plan is executing.
The individual plan items
will also cause events
to be pushed as they
are activated.

Operator
GUIPlan PlanGUI

Command
Status
Handler

createCommandStatus

activate

javax.swing.
JOptionPane

Figure 5-50. GUIPlanModule:ActivatePlan (Sequence Diagram)

R1B1 GUI Detailed Design 5-52 2/22/00

5.51 GUIPlanModule:AddPlan (Sequence Diagram)
This diagram shows how a new plan is created. The user clicks on the Create Plan menu item in
the GUIPlanNavGroup's context menu. (This menu item will only be displayed if the user has
rights.) The GUIPlanNavGroup will create an uninitialized GUIPlan object with default
properties and will call its doProperties method. This is a temporary object, used only for
displaying the properties. The temporary GUIPlan will create a modeless PlanPropertiesDialog
and display it. When the user clicks OK, the dialog will ask the GIUPlan to create a Plan from
the properties entered from the dialog. The GUIPlan will then query all of the Plan Factories
from the trader and will use the first one to create the Plan object. If the Plan was created, the
PlanAdded event will be pushed from the plan server through the plan event channel to update
all of the GUIs. See the GUIPlanModule:PlanAddedEvent diagram for more details.

GUIPlancreate

doProperties

[user clicks OK]
actionPerformed

createFromProperties

[for first PlanFactory found]
createPlan

[error]
showMessageDialog

[error]
accessDenied or CHART2Exception

[no factories found]
showMessageDialog

[no factories found]

GUICosTrading.
Lookup

If successful,
a PlanAdded event
will be pushed to the
plan module. See
PlanAddedEvent sequence
diagram for more details.

[operator clicks
on create plan

menu item]
actionPerformed

javax.swing.
JOptionPaneGUIPlanNavGroup

PlanPropertiesDialog

PlanFactory

getToken

Operator

create

show

query (Plan Factories)

Figure 5-51. GUIPlanModule:AddPlan (Sequence Diagram)

R1B1 GUI Detailed Design 5-53 2/22/00

5.52 GUIPlanModule:CreatePlanItem (Sequence Diagram)
This diagram shows how a plan item is created. When the user invokes the menu on the
GUIPlan object, the GUIPlan object asks the GUIPlanModule for all of the attached
PlanItemCreationSupporters. It then asks each of the supporters for the strings to use for the
plan item creation menu items. Each string is associated with the supporter that supplied it, and
the associations are stored in the GUIPlan object for use when a menu item is clicked on. When
the user clicks on one of these menu items, the GUIPlan's actionPerformed method will be
called, and the GUIPlan will find the matching string stored in the association, and will call the
corresponding PlanItemCreationSupporter to create the new plan item. See the modules that
support plan item creation for more details on how plan items are created.

Each plan item
supporter will
have to check the
access token
before returning
the string for the
menu item, and
if the user does
not have permission,
return null.

clearSupporterMenuStringAssociations

[creation supporter found
for action string]

createNewGUIPlanItem

[* for each supporter]
getPlanItemCreationMenuStrings

[* for each menu string]
storeSupporterMenuStringAssociation

Operator

PlanItemCreation
SupporterGUIPlan GUIPlanModule

[user clicks on
create plan item]
actionPerformed

This will cause the
PlanItemCreationSupporter
to display a plan item properties
dialog for the specific type of
plan item. If the user successfully
enters all pertinent data,
the supporter will call the
specific plan item factory in a
server to create the plan item,
which will then push a plan item
created event to all of the attached
event consumers. See
the sequence diagram
GUIPlanModule:PlanItemAddedEvent
and the specific plan item supporting
modules for more details.

[user right clicks
on plan]

getSSMenuStrings

getPlanItemSupporters

Figure 5-52. GUIPlanModule:CreatePlanItem (Sequence Diagram)

R1B1 GUI Detailed Design 5-54 2/22/00

5.53 GUIPlanModule:Discovery (Sequence Diagram)
This diagram shows what happens during the discovery process, in which the module has a
chance to find out about event channels and objects. The GUI will periodically call the module,
first to discover event channels and then to discover objects. During the event channel discovery
phase, the module looks for Plan event channels in the trader. If it finds any, it creates a
PushEventConsumer and attaches itself to the Event Consumer Group. This will attach the
module to the event channel and will reattach it automatically if the event service is restarted. If
the module was previously attached to the event channel, it will be ignored. During the object
discovery phase, the GUI calls the module to discover objects. The module will query the Plan
objects in the trader. If the Plan does not already exist in the DataModel, a new GUIPlan
wrapper object will be created and added to the DataModel. When the GUIPlan object is
created, it asks the Plan for all of its PlanItems. For each item which is not already in the
DataModel, it will call all of the attached PlanItemCreationSupporters and ask each one to
attempt to create the specific type of GUIPlanItem wrapper object for the generic PlanItem
object. Each PlanItemCreationSupporter will check whether the generic PlanItem object is of its
own specific class of plan item. If so, the PlanItemCreationSupporter must create an object of its
own specific class of GUIPlanItem object to wrap the PlanItem. If a wrapper object was created,
it will be added to the DataModel. After a short delay, the changes made through the DataModel
will update any windows that are attached to the DataModel.

PlanItem

[* for next
PlanItem]

repeat

getID

[plan item
type matches
supporter's

type]
create

[not found]
[* for each plan item supporter]

createGUIPlanItem(plan,planItem)

[GUIPlanItem created]
objectAdded

[GUIPlanItem
created]

addGUIPlanItem

create
getObject

PlanItem
Creation

Supporter

GUIPlanItem

This will work only
if the PlanCreationSupporters
added themselves to the
GUIPlanModule in their startup
methods.

GUIPlan
NavGroup

GUI
GUIPlanModule

CosTrading.
Lookup

PushEvent
Consumer

Event
Consumer

Group

GUIPlan

create

[* for next
discovered plan]

repeat

DataModelPlan

The plan item
created will be
of the specific
class implementing
GUIPlanItem.

Identifier

discoverEventChannels

query (Plan event channels)

[* for each event channel]
create

[* for each event channel]
add

getObject

query (plans)

getID

[plan not found]
create

[plan created]
addPlan

[GUIPlan created]
objectUpdated(GUIPlanNavGroup)

[GUIPlan created]
objectAdded(GUIPlan)

getPlanItems

discoverObjects

getDataModel

Figure 5-53. GUIPlanModule:Discovery (Sequence Diagram)

R1B1 GUI Detailed Design 5-55 2/22/00

5.54 GUIPlanModule:PlanItemAddedEvent (Sequence Diagram)
This diagram shows the handling of the event after a new PlanItem has been created. First, the
GUIPlan to which the new PlanItem belongs is retrieved from the DataModel. Then the module
will ask each PlanItemCreationSupporter to attempt to create a specific GUIPlanItem wrapper
object if the generic PlanItem is a correct type for the supporter. If a GUIPlanItem object was
created by one of the creation supporters, it is added to the GUIPlan and to the DataModel. The
GUIPlan is also updated through the DataModel to make sure that any windows will be updated.

[plan not found]

[* for each plan item supporter
until a GUIPlanItem is returned]

createGUIPlanItem

getDataModel

[no plan item created]

getObject(planId)

GUIPlanModule
GUIPlan

GUIPlanItem

Corba
Event

Service

PlanItem
CreationSupporter DataModel GUI

[GUIPlanItem
already exists]

push
(plan id, plan item)

[PlanItem matches the
supporters' specific class]

create The plan item
supporter will
create its own
specific type of
GUIPlanItem.

getObject(planItemID)

addGUIPlanItem

objectAdded(planItemId)

objectUpdated(planId)

Figure 5-54. GUIPlanModule:PlanItemAddedEvent (Sequence Diagram)

R1B1 GUI Detailed Design 5-56 2/22/00

5.55 GUIPlanModule:PlanItemRemovedEvent (Sequence Diagram)
This diagram shows how a PlanItemRemoved event is handled, after a plan item is deleted. The
GUIPlanModule received the PlanItem identifier and looks up the GUIPlanItem object in the
DataModel. If found, the module gets the GUIPlan and asks it to remove the GUIPlanItem from
its collection. The GUIPlan object is then updated through the DataModel, and the GUIPlanItem
is removed from the DataModel. Any attached observers (e.g., windows) will be updated after a
short delay. The GUIPlanItem will then be removed from memory by Java when the observers
remove their references to it.

GUIPlanItem GUIPlan

After a short delay,
the DataModel
will call all attached
observers. After
all observers remove
their references to
the GUIPlanItem, the
object will be deleted
from memory by
Java garbage collection.

push(plan item id)
getDataModel

getObject

removeGUIPlanItem

[GUIPlanItem
not found]

getGUIPlan

objectUpdated(GUIPlan)

objectRemoved(GUIPlanItem)

CORBA
Event

Service
GUIPlanModule GUI DataModel

Figure 5-55. GUIPlanModule:PlanItemRemovedEvent (Sequence Diagram)

R1B1 GUI Detailed Design 5-57 2/22/00

5.56 GUIPlanModule:PlanRemovedEvent (Sequence Diagram)
This diagram shows how a PlanRemoved event is handled. First, an attempt is made to get the
GUIPlan object from the DataModel. If it exists, the GUIPlan is removed from the
GUIPlanNavGroup. The GUIPlanNavGroup update notification is invoked through the
DataModel, and the GUIPlan is removed from the DataModel. The DataModel will cause any
attached observers to display the change.

objectUpdated(GUIPlanNavGroup)

GUIPlan

CORBA
Event

Service
GUIPlanModule DataModelGUI

push(plan id)

getDataModel

getObject
[not found]

objectRemoved(GUIPlan)

After a short
delay, the DataModel
will notify all observers.
After the observers
remove their references
to the GUIPlan, it will
be deleted at some time
by the Java garbage
collection.

removeGUIPlan

GUIPlanNavGroup

Figure 5-56. GUIPlanModule:PlanRemovedEvent (Sequence Diagram)

R1B1 GUI Detailed Design 5-58 2/22/00

5.57 GUIPlanModule:RemovePlan (Sequence Diagram)
This diagram shows how a plan is removed from the system. The operator clicks on the Delete
Plan menu item. The GUIPlan then gets the access token and calls the Plan to remove itself. If
successful, it will cause the server to push a PlanRemoved event to be pushed through the event
channel. See the diagram GUIPlanModule:PlanRemovedEvent for details on how the GUIs are
updated after the plan is removed.

Operator
GUIPlan Plan GUI

javax.swing.
JOptionPane

If successful, this
will cause the server
to remove the plan and
delete it. The server
will push a PlanRemoved
event in response. See
the diagram GUIPlanModule:
PlanRemovedEvent
for more details.

[clicks on
delete plan
menu item]

actionPerformed

remove

getToken

[AccessDenied or
CHART2Exception]

showMessageDialog

Figure 5-57. GUIPlanModule:RemovePlan (Sequence Diagram)

R1B1 GUI Detailed Design 5-59 2/22/00

5.58 GUIPlanModule:PlanAddedEvent (Sequence Diagram)
This diagram shows how the event is handled when a Plan is added. The GUIPlanModule makes
sure that the GUIPlan does not already exist in the DataModel, and assuming it does not, it
creates the GUIPlan wrapper object for the Plan. The GUIPlan object is then added to the
DataModel and the GUIPlanNavGroup, and the DataModel will update all attached observers to
show the change.

GUIPlanNavGroup

addGUIPlan

objectUpdated(GUIPlanNavGroup)

DataModel

getObject
[plan found]

CORBA
Event

Service

GUIPlanModule

GUIPlan

Plan GUI

push (Plan)

create

getName

getDataModel

objectAdded(GUIPlan)

Figure 5-58. GUIPlanModule:PlanAddedEvent (Sequence Diagram)

R1B1 GUI Detailed Design 5-60 2/22/00

5.59 GUIPlanModule:RemovePlanItem (Sequence Diagram)
This diagram shows how a plan item is removed from a plan and deleted. The operator selects
the plan item and invokes the item's context menu, then clicks on Delete Item. The GUIPlanItem
calls the GUIPlan that it is contained in to remove the item. The GUIPlan then calls the Plan to
remove the item. The served Plan object will then remove the item and push a
PlanItemRemoved event through the event channel. See the diagram
GUIPlanModule:PlanItemRemovedEvent for more details on this event.

javax.swing.
JOptionPaneGUI

If successful, this
will remove
the plan item from
the server and
delete the plan item.
A PlanItemRemoved
event will be pushed
by the serveras
a result of this.
See the diagram
GUIPlanModule:
PlanItemRemovedEvent
for more details.

removeItem

getToken

[error]
showMessageDialog

[AccessDenied or
CHART2Exception]

Operator
[user clicks on

Delete Plan Item
menu item]

actionPerformed getGUIPlan

removeItem

PlanGUIPlanGUIPlanItem

Figure 5-59. GUIPlanModule:RemovePlanItem (Sequence Diagram)

R1B1 GUI Detailed Design 5-61 2/22/00

5.60 GUIPlanModule:Shutdown (Sequence Diagram)
When the GUI calls the module’s shutdown method, the module disconnects from the ORB to
clean up.

ORB

shutdown

disconnect

GUIPlanModule
GUI

Figure 5-60. GUIPlanModule:Shutdown (Sequence Diagram)

R1B1 GUI Detailed Design 5-62 2/22/00

5.61 GUIPlanModule:Startup (Sequence Diagram)
The startup for the GUIPlanModule begins when the GUI calls the startup method. At this time
the module connects itself to the ORB so that it can be called as a PushConsumer. It also creates
a Navigator group to hold the GUIPlan objects and adds the group to the DataModel. NOTE -
Any modules wishing to support plan item creation should attach themselves to the
GUIPlanModule in their startup methods.

getDataModel

GUIPlanNavGroup

ORB

connect

In the modules which
implement PlanItemCreationSupporter,
they should call the Plan Module's
addPlanItemSupporter from within
their startup methods.

GUI
GUIPlanModule DataModel

startup

create

objectAdded

Figure 5-61. GUIPlanModule:Startup (Sequence Diagram)

R1B1 GUI Detailed Design 5-63 2/22/00

5.62 GUIUserManagementModule:AddUser (Sequence Diagram)
This diagram shows how a user is added to the system. From the User Configuration Dialog, the
administrator clicks on "New User", and the Create User Dialog is invoked. When the
administrator clicks “OK,” if the new password is the same as the confirmation password, the
dialog will call the UserManager to create the user. If the user name or password is invalid, a
message box will be displayed and the administrator will be given a chance to correct the
mistake. If the user was successfully created, it will be added to the User Configuration dialog if
it is still open.

UserManager

[InvalidName or
InvalidPassword]

[AccessDenied or
CHART2Exception]

[invalid name or
invalid password]

allow administrator to retype

[AccessDenied or
CHART2Exception]

[invalid name or
password]

showMessageDialog

[clicks on New User]
actionPerformed

createUser

GUI

[AccessDenied or
CHART2Exception]

showMessageDialog

[success and
dialog exists]
createdUser

add user
to list of
users

User
Configuration

Dialog

CreateUser
Dialog

Administrator

getToken

javax.swing.
JOptionPane

[clicks OK]
actionPerformed [passwords

don't match]
showMessageDialog[passwords don't match]

allow user to retype

getUserManager

getOpenedUserConfigDialog

GUIUserManagement
Module

create

show

Figure 5-62. GUIUserManagementModule:AddUser (Sequence Diagram)

R1B1 GUI Detailed Design 5-64 2/22/00

5.63 GUIUserManagementModule:ConfigureRoles (Sequence
Diagram)

This diagram shows how the Role Configuration Dialog is invoked. The adminstrator clicks on
the “Configure Roles” toolbar button. The GUIUserManagementModule then creates the Role
Configuration Dialog. This gets the Organizations from the trader, and gets all of the roles. It
then gets the functional rights for the first role in the list. It displays the roles, functional rights
within a role, and organizations supporting a given functional right. If the user does not have the
ConfigureRoles right, all editing features will be disabled.

For more details on
specific actions that
can be performed on roles
(Create Role, Delete Role,
Modify Role),
see the appropriate
sequence diagram.

Administrator

Role
Configuration

Dialog

GUIUserManagement
Module UserManager GUI

javax.swing.
JOptionPane

[clicks on Configure
Roles toolbar button]

actionPerformed
configureRoles

create

getUserManager
getToken

getRoles

[AccessDenied or
CHART2Exception]
showMessageDialog[error]

[for the first role,
if any]

getRoleFunctionalRights

This should never
happen.

refresh the
functional rights

and organizations

[clicked on Close or
closed window]

actionPerformed or
onWindowClosing

setOpened
RoleConfigDialog(null)

delete

setOpened
RoleConfigDialog

[role selection changed]
getRoleFunctionalRights

[AccessDenied or
CHART2Exception or

InvalidRole]
showMessageDialog

CosTrading.
Lookup

getTrader
query(Organizations)

show

[AccessDenied or
CHART2Exception or

InvalidRole]
showMessageDialog

[no configuration
rights]

disable all editing
features

These exceptions
should never happen
under normal circumstances.

Figure 5-63. GUIUserManagementModule:ConfigureRoles (Sequence Diagram)

R1B1 GUI Detailed Design 5-65 2/22/00

5.64 GUIUserManagementModule:ConfigureUsers (Sequence
Diagram)

This diagram shows how the User Configuration Dialog is invoked. The user clicks on the
“Configure Users” button from the toolbar, which will be disabled unless the user has the rights:
ConfigureUsers or ViewUserConfiguration. The GUIUserManagementModule will create the
UserConfigurationDialog, and it will call the UserManager to get the users and the user roles. If
the user has ViewUserConfiguration rights only, all user configuration functionality in the dialog
will be disabled.

TokenManipulator

[no configuration
rights]

disable all editing
features

checkAccess

For more details on
specific actions that
can be performed on users
(Create User, Delete User,
Grant Role, Revoke Role,
and Set User Password),
see the appropriate
sequence diagram.

show

Administrator

User
Configuration

Dialog

GUIUserManagement
Module UserManager GUI

javax.swing.
JOptionPane

[clicks on Configure
Users toolbar button]

actionPerformed

create

getUserManager

getUsers

[for the first user,
if any]

getUserRoles

getToken

[AccessDenied or
CHART2Exception]

showMessageDialog[error]

[AccessDenied or
CHART2Exception or

UnknownUser]
showMessageDialog

This should never
happen.

setOpened
UserConfigDialog

[user selection changed]
getUserRoles

[AccessDenied or
CHART2Exception or

UnknownUser]
showMessageDialog

[clicked on Close
or closed window]
actionPerformed or
onWindowClosing

setOpened
UserConfigDialog(null)

This button will
be hidden or
disabled if the
user does
not have the rights:
ConfigureUser or
ViewUserConfiguration

These exceptions
should never happen
under normal circumstances.

configureUsers

Figure 5-64. GUIUserManagementModule:ConfigureUsers (Sequence Diagram)

R1B1 GUI Detailed Design 5-66 2/22/00

5.65 GUIUserManagementModule:CreateRole (Sequence Diagram)
This diagram shows how a role is added to the system. From the Role Configuration Dialog, the
administrator clicks on "New Role", and the Create Role Dialog is invoked. When the
administrator clicks “OK,” the dialog will call the UserManager to create the role. If the role is a
duplicate, a message box will be displayed and the administrator will be given a chance to
correct the mistake. If the role was successfully created, it will be added to the Role
Configuration Dialog if it is still open.

getToken

getUserManager

createRole

[AccessDenied or
CHART2Exception]

showMessageDialog

[duplicate role]
showMessageDialog

[success and
dialog exists]
createdRole

add role
to list of

roles

[AccessDenied or
CHART2Exception]

[AccessDenied or
CHART2Exception]

[DuplicateRole]

[duplicate role]
allow administrator to retype

getOpenedRoleConfigDialog

Administrator UserManager

CreateRole
Dialog

javax.swing.
JOptionPane

GUIUserManagement
ModuleGUI

Role
Configuration

Dialog

[clicks on New Role]
actionPerformed

create

show

[clicks OK]
actionPerformed

Figure 5-65. GUIUserManagementModule:CreateRole (Sequence Diagram)

R1B1 GUI Detailed Design 5-67 2/22/00

5.66 GUIUserManagementModule:DeleteRole (Sequence Diagram)
This diagram shows how a role is deleted from the system. From the Role Configuration Dialog,
the administrator selects a role and clicks on “Delete Role.” The dialog handles the command
and calls the UserManager to delete the role. If successful, the role is removed from the
displayed list.

[success]
remove role

from list

Display the error
to the administrator.
These are very
unlikely except
for RoleInUse.[AccessDenied or

InvalidRole or
RoleInUse or

CHART2Exception]
showMessageDialog

Administrator

Role
Configuration

Dialog
GUIUserManagement

Module GUI UserManager
javax.swing.
JOptionPane

[clicks on
Delete Role]

actionPerformed
getUserManager

getToken

deleteRole

Figure 5-66. GUIUserManagementModule:DeleteRole (Sequence Diagram)

R1B1 GUI Detailed Design 5-68 2/22/00

5.67 GUIUserManagementModule:DeleteUser (Sequence Diagram)
This diagram shows how a user is deleted from the system. The administrator selects a user and
clicks on “Delete User” from the User Configuration Dialog. The dialog calls the UserManager,
which deletes the user from the system. If the user is currently logged in, a message box will be
displayed informing the administrator. If the user is successfully deleted, the user’s name will be
removed from the dialog.

GUIUserManagement
Module

User
Configuration

Dialog UserManager GUI
javax.swing.
JOptionPane

[clicked on
Delete User]

actionPerformed
get

getUserManager

getToken

deleteUser

[success]
remove from

list

Only the UserLoggedIn
error is likely to be seen.
Display a dialog.

[UnknownUser,
UserLoggedIn,
AccessDenied,

CHART2Exception]
showMessageDialog

Administrator

Figure 5-67. GUIUserManagementModule:DeleteUser (Sequence Diagram)

R1B1 GUI Detailed Design 5-69 2/22/00

5.68 GUIUserManagementModule:ForceLogout (Sequence Diagram)
This diagram shows how the Force Logout command is performed. The administrator clicks on
the Force Logout button on the toolbar. The GUIUserManagementModule then creates a
ForceLogoutDialog, which displays all of the users from all of the Operations Centers. When
the adminstrator selects a user and hits the Force Logout button on the dialog, the Operations
Center will be called to log the user out.

We should never
get an AccessDenied
exception since the
button will not
be enabled at login
if the user doesn't
have rights.

[AccessDenied or
LogoutFailure]

showMessageDialog
[success]

remove from
list

[clicks on close]
actionPerformed

delete

javax.swing.
JOptionPane

getOperationsCenter

forceLogout

[AccessDenied]
showMessageDialog

getToken

LoginSession

show

[clicks on Force Logout]
actionPerformed

TokenManipulator

[no ManageUserLogins
right]

disable login
management
functionality

checkAccess

This happens
on the remote GUI which
is being forced to log out.

forceLogout

logout

[AccessDenied or LogoutFailure]

[AccessDenied]

[* for each login session]
getUsername

getToken
[* for each Op Ctr]
getLoginSessions

Administrator

GUIUserManagement
Module

UserLoginsDialog

CosTrading.
Lookup OperationsCenterGUI

[clicked on
Force Logout]

actionPerformed create

query(Operation Centers)

Figure 5-68. GUIUserManagementModule:ForceLogout (Sequence Diagram)

R1B1 GUI Detailed Design 5-70 2/22/00

5.69 GUIUserManagementModule:GrantRole (Sequence Diagram)
This diagram shows how a role is granted to a user. From the User Configuration dialog, the
administrator clicks on an (unchecked) role checkbox in the role list. The dialog will mark the
role as checked, which assumes a successful operation. Then it will call the UserManager to
grant the role. On failure, a message box will be displayed and the role will be unchecked.

Administrator

User
Configuration

Dialog
GUIUserManagement

Module UserManager

[clicks on
unchecked role]
actionPerformed

getUserManager

grantRole

GUI
javax.swing.
JOptionPane

Display a message
box with the internal
error. None of these
should happen
in the usual case.

getToken

[DuplicateRole or
InvalidRole or
UnknownUser]

showMessageDialog

set role
checkbox

[error]
clear role
checkbox

Figure 5-69. GUIUserManagementModule:GrantRole (Sequence Diagram)

R1B1 GUI Detailed Design 5-71 2/22/00

5.70 GUIUserManagementModule:Login (Sequence Diagram)
This diagram shows the user-specific initialization that is done at login.

Currently this does nothing

GUI

GUIUserManagement
Module

login

Figure 5-70. GUIUserManagementModule:Login (Sequence Diagram)

R1B1 GUI Detailed Design 5-72 2/22/00

5.71 GUIUserManagementModule:Discovery (Sequence Diagram)
This diagram shows how UserManager objects are discovered. The GUI will call the
GUIUserManagementModule to discover objects, and the module will query the trader for any
published UserManager objects. Then it will try to ping each one until one responds, and if the
ping is successful, it will store the UserManager for later use. Once a UserManager is stored, it
will be pinged first before querying from the trader.

This does nothing,
as there is no event channel
for this module.

GUI

GUIUserManagement
Module

CosTrading.
Lookup UserManager

discoverEventChannels

discoverObjects

query(User Managers)

[successful ping]
store UserManager

[* for each UserManager
until successful ping]

ping

[UserManager found previously]
ping

[ping successful]

Figure 5-71. GUIUserManagementModule:Discovery (Sequence Diagram)

R1B1 GUI Detailed Design 5-73 2/22/00

5.72 GUIUserManagementModule:ModifyRole (Sequence Diagram)
This diagram shows how roles are modified in the system. From the RoleConfigurationDialog,
the adminstrator clicks on a functional right or an organization to toggle its presence in the role.
The dialog retrieves all of the functional rights from its components, then sets the functional
rights by calling the User Manager. If an error occurs, the correct functional rights for the role
are retrieved from the User Manager, and the dialog is refreshed based on the correct rights.

[failure]
setRoleFunctionalRIghts

GUIUserManagement
Module GUI

javax.swing.
JOptionPane

setRoleFunctionalRights

getToken

getFunctionalRights

[AccessDenied,
InvalidRole,

InvalidFunctionalRight,
CHART2Exception]

showMessageDialog

Administrator

Role
Configuration

Dialog UserManager

[clicks on
functional right
or organization]
actionPerformed

[failure]
getRoleFunctionalRights

Figure 5-72. GUIUserManagementModule:ModifyRole (Sequence Diagram)

R1B1 GUI Detailed Design 5-74 2/22/00

5.73 GUIUserManagementModule:RevokeRole (Sequence Diagram)
This diagram shows how a role is revoked from a user. From the User Configuration dialog, the
administrator clicks on a (checked) role checkbox in the role list. The dialog will mark the role
as unchecked, which assumes a successful operation. Then it will call the UserManager to
revoke the role. On failure, a message box will be displayed and the role will be checked.

GUI
javax.swing.
JOptionPane

Display a message
box with the internal
error. None of these
should happen
in the usual case.

Administrator

User
Configuration

Dialog

[clicks on
checked role]

actionPerformed clear role
checkbox

getUserManager

getToken
revokeRole

[AccessDenied or
InvalidRole or

UnknownUser or
CHART2Exception]

showMessageDialog[error]
set role

checkbox

GUIUserManagement
Module UserManager

Figure 5-73. GUIUserManagementModule:RevokeRole (Sequence Diagram)

R1B1 GUI Detailed Design 5-75 2/22/00

5.74 GUIUserManagementModule:Startup (Sequence Diagram)
This diagram shows the actions performed by the GUIUserManagementModule at startup.

GUI

GUIUserManagement
Module

startup

Currently this does nothing.

Figure 5-74. GUIUserManagementModule:Startup (Sequence Diagram)

R1B1 GUI Detailed Design 6-1 2/22/00

6 GUI Screen Captures

6.1 GUI:ScreenAccess (State Chart)
This diagram shows how all of the major windows in the GUI may be invoked from a user's
point of view. The GUI will create the GUIToolBar at startup, which is the main launching point
for all second-level windows. The main commands are located on the toolbar, while less
commonly used functionality and object-specific functionality is invoked from the Navigator.

Set Message or
Broadcast Message

Show True Display

DMS Message
Library Menu

DMS Stored
Message Menu

right click on plan group

Plan Nav Group
Menu

right click on
DMS library group

New DMS
Message Item

right click on DMS
message item

Edit Properties

New Library

DMS Message Item
Menu

right click on DMS

right click
with no objects

selected

unhandled shared
resources (from

system watchdog)

Command Status

Transfer
Shared

Resources

Logout

System Menu

New Message

Edit Properties

right click on
DMS Message Library

right click on
stored DMS Message

Edit Properties

right click on DMS group

DMS Menu

DMS Message
Library Nav Group

Menu

DMS Nav Group
Menu

right click on dictionary

startup

Login

Navigator

Manage
Logins

Preferences

Exit

Configure Users

Configure Roles

New User

New Role

Change
User

Change Password

New
Plan

Edit Properties

Edit Properties

New DMS

Edit Properties

right click on plan

Change
Own

Password
Dialog

Navigator
Window

Create Role
Dialog

Create User
Dialog

Role
Configuration

Dialog

User
Configuration

Dialog

User
Logins
Dialog

Command
Status and Failures

Window

GUI
Toolbar

Login
Dialog

Transfer
Resources

Dialog

User
Preferences

Dialog

Dictionary
Properties

Dialog

Plan
Properties

Dialog

DMS
Properties Dialog

DMS
Stored Msg Item
Properties Dialog

DMS Message
Editor Dialog

DMS
Show True Display

Window

DMS Message Library
Properties Dialog

Plan Menu

Dictionary Menu

Figure 6-1. GUI:ScreenAccess (State Chart)

R1B1 GUI Detailed Design 6-2 2/22/00

6.2 Change Own Password Dialog

This dialog allows a user to change his/her own system password. The user must specify his/her
current password along with a new password to use for future logins. The user must enter the
new password twice to prevent typographical errors.

6.3 Command Status View

This view shows the current status of all currently running operations. The “Description”
column contains a description of the command. The “Start Time” column contains the time/date
that the command was issued. The “Last Known Status” column contains the text status last
reported by the server process executing the command. The “Update Time” column contains the
time/date that the server last updated the status of this command.

R1B1 GUI Detailed Design 6-3 2/22/00

6.4 Create Role Dialog

This dialog allows the user to specify the name and description of the role that he/she is adding
to the system. This dialog is accessed by pressing the “New Role” button on the Role
Configuration Dialog.

6.5 Create User Dialog

This dialog allows the user to specify the user name and password of the user that he/she is
adding to the system. This dialog is accessed by pressing the “New User” button on the User
Configuration Dialog.

R1B1 GUI Detailed Design 6-4 2/22/00

6.6 Dictionary Properties Dialog

This dialog allows a user to view and alter the current list of banned words in the system
dictionary. The “Current Banned Words” list always shows the current list of banned words in
the system dictionary. The user may select any subset of this list and mark it for removal by
pressing the “>>” button. The user may add a word to the banned words list by typing it in the
“New Word” field and pressing the “Add” button. When the user presses the “Apply” button,
the words to remove will be removed from the banned words list, the words to add will be added
to the banned words list, and the current list of banned words will be updated. The user may
press “Cancel” at any time to quit using the dialog. When the user cancels the dialog, any words
to add and words to remove that have not been applied (by pressing the “Apply” button) will not
alter the system dictionary.

R1B1 GUI Detailed Design 6-5 2/22/00

6.7 DMS Message Editor Dialog

This dialog allows a user to edit the current message on a particular DMS, edit the text in a
stored DMS message from a library, or broadcast a message to a number of DMS objects. If the
user is editing the current message of a single DMS the “Category” and “Message Name” fields
will not be visible and when the user presses OK the message will be sent to the DMS. If the
user is editing a message to broadcast to multiple DMS objects, the “Category” and “Message
Name” fields will not be visible and the message will be sent to all of the DMS objects when the
user presses OK. If the user is editing a stored DMS message all of the fields will be visible and
the message name, category and message contents will all be set when the user presses OK.

R1B1 GUI Detailed Design 6-6 2/22/00

6.8 DMS Message Library Properties Dialog

This dialog allows a user to set the name of a DMS message library. It is accessed by selecting
“Properties” from the context menu of a DMS message library object.

6.9 DMS Properties Dialog

This dialog allows a user to set the configuration information for a particular DMS. This dialog
is presented when the user opts to add a new DMS to the system, or when the user selects
“Properties” from the context menu of a DMS. When the user presses “OK” the new
configuration information is sent to the DMS server.

R1B1 GUI Detailed Design 6-7 2/22/00

6.10 DMS Stored Message Item Properties Dialog

This dialog allows a user to select the DMS and stored message that will be used for a particular
plan item. When the item is activated, the selected library message will be displayed on the
selected DMS. The message preview button will cause a window to be displayed that shows the
contents of the selected library message.

6.11 GUI Toolbar

This window is the main window of the CHART II GUI application. It provides buttons that
allow the user to perform system functions.

R1B1 GUI Detailed Design 6-8 2/22/00

6.12 Login User Dialog

This dialog allows a user to enter his/her user name and password. This dialog is presented when
a user opts to login or change user. In the case of a change user command, the user who is
logging in for the next shift should provide his/her user name and password.

6.13 Plan Properties Dialog

This dialog allows a user to alter the name of a system plan. It is accessed by selecting the
“Properties” menu item from the plan object’s context menu.

R1B1 GUI Detailed Design 6-9 2/22/00

6.14 Role Configuration Dialog

This dialog allows a user to create new roles, delete existing roles, and alter the functional rights
assigned to a particular role. The user may select one role from the “Role” list. The “Role
Functional Right” list will then update with the current functional rights for the selected role.
When the user selects a particular functional right, the “Organization” list will update to provide
a list of available organizations for that right. The user may then specify which organizations the
right should be granted for.

R1B1 GUI Detailed Design 6-10 2/22/00

6.15 Transfer Controlled Resources Dialog

This dialog provides a list of controlled resources for a particular operations center. The user
may select a group of controlled resources and a target operations center. When the user presses
the “Transfer” button, the selected resources will be transferred to the target operations center.

6.16 User Configuration Dialog

This dialog allows a user to create new users, delete existing users, change a user’s system
password, and alter the roles that a user is allowed to utilize. The user may select a single user
from the “User” list. The “Roles” list will then update by placing check marks next to those
roles that the selected user may currently utilize. The user may alter the role assignments by
checking or un-checking roles in this list.

R1B1 GUI Detailed Design 6-11 2/22/00

6.17 Manage Logins Dialog

This dialog allows a user to force another logged in user to log out of the system. This dialog
will present a list of all users currently logged in and their current operations center. Pressing
“Force Logout” will force the currently selected users out of the system.

	Introduction
	Purpose
	Objectives
	Scope
	Acronyms
	References
	Design Process
	Design Tools
	Work Products

	S
	Software Architecture
	Use Cases
	Release1UseCaseDiagram (Use Case Diagram)

	C
	Classes
	R1B1GUIClassDiagram (Class Diagram)
	CommandFailureView (Class)
	CommandStatus (Class)
	CommandStatusImpl (Class)
	CommandStatusView (Class)
	CosEvent. PushConsumer (Class)
	java.awt.event. ActionListener (Class)
	InstallableModule (Class)
	PreferenceHelper (Class)
	Menuable (Class)
	SystemPreferenceSupporter (Class)
	UserLoginSession (Class)
	UserPreferenceSupporter (Class)
	UserPreferenceSheet (Class)
	GUI (Class)
	GUIDMSModule (Class)
	GUIDictionary Module (Class)
	GUIPlan Module (Class)
	DataModel (Class)
	GUIUserManagement Module (Class)
	PreferenceRegisterable (Class)
	DiscoveryThread (Class)
	EventConsumerGroup (Class)
	java.lang.Runnable (Class)
	ModelObserver (Class)
	GUINavigatorDriver (Class)
	UserLoginSessionImpl (Class)
	CommandStatusHandler (Class)
	GUIToolBar (Class)
	NavigatorSupporter (Class)

	DataModelClasses (Class Diagram)
	ChangeCollection (Class)
	GUIModelObserver (Class)
	GUIUpdater (Class)
	DataModel (Class)
	Identifier (Class)
	java.lang.Runnable (Class)
	java.util.Hashtable (Class)
	ModelChange (Class)
	ModelObserver (Class)
	ObjectAdded (Class)
	ObjectChange (Class)
	ObjectRemoved (Class)
	ObjectUpdated (Class)
	UpdateHint (Class)
	UpdatePriorityLevel (Class)

	NavigatorClasses (Class Diagram)
	GUI (Class)
	GUINavigatorDriver (Class)
	java.util. Hashtable (Class)
	ModelObserver (Class)
	Navigable (Class)
	Navigator (Class)
	NavigatorSupporter (Class)
	NavList (Class)
	NavListDisplayable (Class)
	javax.swing.table. AbstractTableModel (Class)
	javax.swing.tree. DefaultTreeModel (Class)
	javax.swing.tree. MutableTreeNode (Class)
	NavTableModel (Class)
	NavTree (Class)
	NavTreeDisplayable (Class)
	NavTreeModel (Class)

	GUIDMSClasses (Class Diagram)
	CosEvent.PushConsumer (Class)
	DefaultMultiFormatter (Class)
	DMS (Class)
	DMSLibraryNavGroup (Class)
	DMSNavGroup (Class)
	DMSMessageLibraryProperties (Class)
	DMSMessageView (Class)
	DMSStoredMsgItem (Class)
	DMSPropertiesDialog (Class)
	GUIDMS (Class)
	GUIDMSModule (Class)
	GUIDMSStoredMsgItem (Class)
	GUIPlan (Class)
	DMSStoredMessage (Class)
	GUIDMSStoredMessage (Class)
	Identifiable (Class)
	GUIPlanItem (Class)
	InstallableModule (Class)
	Menuable (Class)
	NavTreeDisplayable (Class)
	MultiFormatter (Class)
	MultiParseListener (Class)
	DataModel (Class)
	DMSMessageEditor (Class)
	GUIDMSMessageLibrary (Class)
	DMSMessageLibrary (Class)
	DMSStoredMsgItemProperties (Class)
	GUIDictionary (Class)
	PlanItem (Class)
	DMSTrueDisplay (Class)
	GUIModelObserver (Class)
	java.awt.event.ActionListener (Class)
	NavListDisplayable (Class)
	PlanItemCreationSupporter (Class)
	java.awt.event.KeyListener (Class)
	SHAMultiFormatter (Class)

	GUIDictionaryModuleClasses (Class Diagram)
	CosEvent.PushConsumer (Class)
	Dictionary (Class)
	DictionaryPropertiesDialog (Class)
	GUIDictionary (Class)
	GUIDictionaryModule (Class)
	DataModel (Class)
	GUIDictionaryNavGroup (Class)
	GUIModelObserver (Class)
	Identifiable (Class)
	InstallableModule (Class)
	javax.swing.JFrame (Class)
	Menuable (Class)
	GUI (Class)
	java.awt.event. ActionListener (Class)
	ModelObserver (Class)
	Navigable (Class)
	NavListDisplayable (Class)
	NavTreeDisplayable (Class)

	GUIPlanClasses (Class Diagram)
	DataModel (Class)
	GUIPlan (Class)
	GUIPlanItem (Class)
	GUIPlanModule (Class)
	PlanItem (Class)
	CosEvent. PushConsumer (Class)
	GUIPlanNavGroup (Class)
	Menuable (Class)
	Identifiable (Class)
	NavTreeDisplayable (Class)
	Plan (Class)
	InstallableModule (Class)
	java.awt.event. ActionListener (Class)
	NavListDisplayable (Class)
	PlanItemCreationSupporter (Class)

	GUIUserManagementClasses (Class Diagram)
	CreateRoleDialog (Class)
	CreateUserDialog (Class)
	GUIUserManagementModule (Class)
	InstallableModule (Class)
	java.awt.event. ActionListener (Class)
	UserLoginsDialog (Class)
	UserManager (Class)
	RoleConfigurationDialog (Class)
	UserConfigurationDialog (Class)

	UtilityClasses (Class Diagram)
	CosEventChannelAdmin.EventChannel (Class)
	DBConnectionManager (Class)
	DefaultServiceApplication (Class)
	EventConsumer (Class)
	EventConsumerGroup (Class)
	CommandQueue (Class)
	FMS (Class)
	FunctionalRight (Class)
	Identifiable (Class)
	Identifier (Class)
	OpLogQueue (Class)
	PushEventSupplier (Class)
	IdentifiableLookupTable (Class)
	ObjectRemovalListener (Class)
	BucketSet (Class)
	IdentifierGenerator (Class)
	java.lang.Runnable (Class)
	java.util.Properties (Class)
	Log (Class)
	LogFile (Class)
	OperationsLog (Class)
	PushEventConsumer (Class)
	ServiceApplicationModule (Class)
	ServiceApplication (Class)
	ServiceApplicationProperties (Class)
	TokenManipulator (Class)
	MultiFormatter (Class)
	MultiParseListener (Class)
	MultiConverter (Class)
	OpLogMessage (Class)
	QueueableCommand (Class)

	SystemInterfaces (Class Diagram)
	CommandStatus (Class)
	CommEnabled (Class)
	Dictionary (Class)
	DMS (Class)
	UserLoginSession (Class)
	DMSControl.Configuration (Class)
	DMSControl.FontMetrics (Class)
	DMSControl.SignMetrics (Class)
	DMSStoredMsgItem (Class)
	OperationsCenter (Class)
	DMSLibraryFactory (Class)
	SharedResourceManager (Class)
	DMSFactory (Class)
	DMSMessageLibrary (Class)
	DMSStoredMessage (Class)
	Organization (Class)
	PlanFactory (Class)
	Service (Class)
	Plan (Class)
	PlanItem (Class)
	SharedResource (Class)
	UserManager (Class)

	JavaClasses (Class Diagram)
	java.awt.event.ActionListener (Class)
	java.lang.Object (Class)
	java.lang.Runnable (Class)
	java.util.Hashtable (Class)
	java.util.Properties (Class)
	javax.swing.table. AbstractTableModel (Class)
	javax.swing.tree. DefaultTreeModel (Class)
	javax.swing.tree. MutableTreeNode (Class)
	java.awt.event.KeyListener (Class)
	javax.swing.JFrame (Class)
	javax.swing.JOptionPane (Class)

	CORBAClasses (Class Diagram)
	BOA (Class)
	com.ooc.CosEventChannelAdmin.impl.EventChannel (Class)
	CosEventChannelAdmin. EventChannel (Class)
	CosEvent. PushConsumer (Class)
	CosTrading.Lookup (Class)
	CosTrading.Register (Class)
	ORB (Class)

	S
	Sequence Diagrams
	GUI:ChangeUserBasic (Sequence Diagram)
	GUI:CommandObjectBasic (Sequence Diagram)
	GUI:ConfigurePreferencesBasic (Sequence Diagram)
	GUI:DiscoveryBasic (Sequence Diagram)
	GUI:LoginBasic (Sequence Diagram)
	GUI:LogoutBasic (Sequence Diagram)
	GUI:MakeMenuMultipleSelect (Sequence Diagram)
	GUI:MakeMenuNoneSelected (Sequence Diagram)
	GUI:MakeMenuSingleSelect (Sequence Diagram)
	GUI:ShutdownBasic (Sequence Diagram)
	GUI:StartupBasic (Sequence Diagram)
	GUI:EventUpdatePushedBasic (Sequence Diagram)
	GUI:SystemCommandBasic (Sequence Diagram)
	DataModel:AttachObserver (Sequence Diagram)
	DataModel:ObjectAdded_ (Sequence Diagram)
	DataModel:ObjectRemoved (Sequence Diagram)
	DataModel:ObjectUpdated (Sequence Diagram)
	DataModel:UpdateObservers (Sequence Diagram)
	Navigator:AddNavigables (Sequence Diagram)
	Navigator:Initialize (Sequence Diagram)
	Navigator:RemoveNavigables (Sequence Diagram)
	Navigator:TreeSelectionChange (Sequence Diagram)
	GUIDMSModule:AddDMS (Sequence Diagram)
	GUIDMSModule:AddMessageToLibrary (Sequence Diagram)
	GUIDMSModule:CreateMessageLibrary (Sequence Diagram)
	GUIDMSModule:DeleteMessageLibrary (Sequence Diagram)
	GUIDMSModule:DeleteStoredMessage (Sequence Diagram)
	GUIDMSModule:Login (Sequence Diagram)
	GUIDMSModule:Logout (Sequence Diagram)
	GUIDMSModule:EditLibraryMessage (Sequence Diagram)
	GUIDMSModule:SetMessageLibraryProperties (Sequence Diagram)
	GUIDMSModule:BlankDMS (Sequence Diagram)
	GUIDMSModule:CreateNewPlanItem (Sequence Diagram)
	GUIDMSModule:DeleteDMS (Sequence Diagram)
	GUIDMSModule:Shutdown (Sequence Diagram)
	GUIDMSModule:Startup (Sequence Diagram)
	GUIDMSModule:Discovery (Sequence Diagram)
	GUIDMSModule:ForcePoll (Sequence Diagram)
	GUIDMSModule:ModifyDMSSettings (Sequence Diagram)
	GUIDMSModule:PutOnline (Sequence Diagram)
	GUIDMSModule:Reset (Sequence Diagram)
	GUIDMSModule:SetMessage (Sequence Diagram)
	GUIDMSModule:ShowTrueDisplay (Sequence Diagram)
	GUIDMSModule:TakeOffline (Sequence Diagram)
	GUIDictionaryModule:DictionaryProperties (Sequence Diagram)
	GUIDictionaryModule:Discovery (Sequence Diagram)
	GUIDictionaryModule:EventHandling (Sequence Diagram)
	GUIDictionaryModule:Shutdown (Sequence Diagram)
	GUIDictionaryModule:Startup (Sequence Diagram)
	GUIPlanModule:ActivatePlan (Sequence Diagram)
	GUIPlanModule:AddPlan (Sequence Diagram)
	GUIPlanModule:CreatePlanItem (Sequence Diagram)
	GUIPlanModule:Discovery (Sequence Diagram)
	GUIPlanModule:PlanItemAddedEvent (Sequence Diagram)
	GUIPlanModule:PlanItemRemovedEvent (Sequence Diagram)
	GUIPlanModule:PlanRemovedEvent (Sequence Diagram)
	GUIPlanModule:RemovePlan (Sequence Diagram)
	GUIPlanModule:PlanAddedEvent (Sequence Diagram)
	GUIPlanModule:RemovePlanItem (Sequence Diagram)
	GUIPlanModule:Shutdown (Sequence Diagram)
	GUIPlanModule:Startup (Sequence Diagram)
	GUIUserManagementModule:AddUser (Sequence Diagram)
	GUIUserManagementModule:ConfigureRoles (Sequence Diagram)
	GUIUserManagementModule:ConfigureUsers (Sequence Diagram)
	GUIUserManagementModule:CreateRole (Sequence Diagram)
	GUIUserManagementModule:DeleteRole (Sequence Diagram)
	GUIUserManagementModule:DeleteUser (Sequence Diagram)
	GUIUserManagementModule:ForceLogout (Sequence Diagram)
	GUIUserManagementModule:GrantRole (Sequence Diagram)
	GUIUserManagementModule:Login (Sequence Diagram)
	GUIUserManagementModule:Discovery (Sequence Diagram)
	GUIUserManagementModule:ModifyRole (Sequence Diagram)
	GUIUserManagementModule:RevokeRole (Sequence Diagram)
	GUIUserManagementModule:Startup (Sequence Diagram)

	G
	GUI Screen Captures
	GUI:ScreenAccess (State Chart)
	Change Own Password Dialog
	Command Status View
	Create Role Dialog
	Create User Dialog
	Dictionary Properties Dialog
	DMS Message Editor Dialog
	DMS Message Library Properties Dialog
	DMS Properties Dialog
	DMS Stored Message Item Properties Dialog
	GUI Toolbar
	Login User Dialog
	Plan Properties Dialog
	Role Configuration Dialog
	Transfer Controlled Resources Dialog
	User Configuration Dialog
	Manage Logins Dialog

